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ABSTRACT

A general repairable system model is proposed with a
maintenance schedule such that the failure rate is reduced
after each preventive maintenance. The model introduces
naturally the concept of system availabilities as random
variables. Probability distributions of the stochastic
availabilites are derived. The stochastic availability is
optimized with respect to the duration of the operating
interval between maintenance operations, and with respect
to an age replacement policy. Analysis and optimization are
achieved by a PASCAL computer program which is developed for
computations and illustrations of various failure rate charac-
teristics and parameter variations. The concept is further
extended to stochastic cost function or generalized stochastic

availability.
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CHAPTER 1

INTRODUCTION

8 S apaaisa Tem—

€ 1.1 CONCEPTS OF SYSTEM AVAILABILITY

Reliability is a relatively new:field of engineering (Shooman (1968);
Dhillon and -Singh (1981)) and applied probability (Barlow and Proschan (1965)).
It has found its importance in the planning, design, and operation of systems

- in recent years. Formally, system reliability is defined as the probability
that a system operatan.without failure during the time interval (0,%t] ,
that is,

.

P{ T>t } = 1~ F(%) (1.1.1)

where T  is the (random) lifetime of failure~free operation of an initially
good system until failure, F(.):' is the :distribution function (d.f.,) of T
and P{.} denotes the probability measure. The reliability is mainly
' defined for unrepairable systems. Other definitions can be found in various
references (Barlow and Proschan (1965); Kozlov and Ushsakov (1970)).
Note that the field of reliability engineering concerns the probability of
non-negative random variables cnly.

L]

For repairable and maintained systems, a measure of system performance
and a main design crierion is the concept of system availability. Various
definitions of availability have been defined in the past three decades
(Osaki and Nakagawa (1976); -Lie, Hwang and :Tillman (1977)). Ve shall
review some of them,

AR
e dhn

Hasford (1960), Barlow and Hunter (1960), and also Barlow and Proschan
(1965) defined the following three types of availability :
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(1) Instantaneous Availability / Pointwise Availability

The instantaneous (or pointwise) availability is the probability that
the system is operative at any time ¢t . It gives a good mesure for
systems functioning at any random time.

(2) Average Uptime Availability / Interval Availability

The average uptime (or interval) availability is the expected ratio of
uptime in a.given time interval. It is a satisfactory measure for
system working over a duty cycle.

(3) Steady~-State Availability / Limiting-Interval Availability

The steady-state (orilimiting—interval) availability is the average
uptime availability when the time interval is very large. It is
relatively simple to calculate and it is a quite satisfactory measure
for continously operating systems. (See also Eq.(1.1.3)).

Kabak (1969) proposed the following two versions of availability for
systems with up and down cycles for an exponential failure time and constant
repair time :

(a) Availability for Multipe Cycles

The availability of n cycles ( n = 1,2,3,... ) is the expected value
of the proportion of total uptime in the n <cycles to the total elapsed

‘time in the n cycles.

(b) ‘Finite Time Availability

The finite time availability A(T) for a time interval (0,T} is
determined by combining the probability of n failures in a given.time
.~interval with the proportion of available time for the interval.
(See Kabak (1969) for detail).
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-will be denoted by

3

It has been shown by Kabak (1969) that for exponential failure time and
constant repair:time,
(a) as the number of cycles increases, the limit of the availability for
multiple cycles is the steady-state availability, and
(b) as the time interval increases the.finite .time availability also
approaches the steady-state availability,

Consider a repairable system with up and down cycles all of which are

. independent. Let

Tup 3 uptime random variable in an up-cycle

Tdown = downtime random variable in a down-cycle
Note that all the Tup'S‘ars independent and identically distributed (i.i.d.)
random variables and all the Tdown's are also i.i.d. It can be shown by
renewal theory for an alternating renewal process (Parzen (1962)) that

E{T
‘lim P{System isup at t} = (Fyp) (1.1.2)
teco E[Ty) * E(Tyoum)
- —BE.___ (1.1.2')
MTBF + MTTR

where E[.] = expectation
MIBF = mean  time between failure
MITR = mean time to repair.

The fraction in Eq.(1.1.2) is simpy the steady-state availability which

Thus,
E( uptime )
EC uptime } + E( downtime }

A0 =
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In particular, for exponentially distributed uptime and downtime, namely,
with probability density functions (p.d.f.)

f'x'up(t) = Jexp(-At) , t)0 (1.1.4)
and
f'r
down(t) = puexp(-pt) , t20 (1.1.5)
then
Aa - 1/A - M

/A + 1/u A+ A (1.1.6)

Eq.(1.1.3) ' is widely accepted as the (simplest and non-rando)
definjition of system availability. However Eq.(1.1.3) .gives only the
average value and there is no probabilistic guarantee that A®  will ever
be achieved. A partial remedy had been proposed by lartz (1971) who
defined the following random variable :

A = uptime

uptime + downtime (1.1.7)
T
= _L——
[}
T 4T (1.1.7')
up down
Since T and T are random variables, A. is indeed a random variable.
up down
Martz studied the following definition of availability :
Single Cycle Availability
The single cycle availability AL is the value such that
p{ada.} = r (1.1.8)
for all r€ (0,1} , or
I f.(a) da = »r (l.1.8")
A
Ar

where fA(.) is the p.d.f. of A .
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By specifying »r , Martz's definition gives a probabilistic guarantee
on the frequency of occurrence of the availability value Ar . Martz also
derived some expressions of Ar by evaluating f A( .) for independent
uptime and downtime. In particular, if Tup and T down are exponential
as given in Eq.(1.1.4) and (1.1.5), then

A m —lzDA (1.1.9)
r
(1-r)p + rA
When r=j4 ,
K
A,/z = A (1.1.10)

Nakagawa and Goel (1973) extended Martz's definition to a finite time
interval :

Availability for a Finite Interval

Let
Tu Tu
Tup * Td.own t

The availability for a finite interval Ar(t) - is such that for t 20 and
r€ (0,17 ,

. P{ace)ya ()} = r (1.1.12)

Some complicated expressions for Ar(t) had been derived by them for
independent uptime and downtime.

Ly
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Marshall and Goldstein (1980) studied a repairable system and
introduced the concept of cycle availability as a random variable :
-

Cyclo-Availnbilng

The cycle availability Ac' is a random variable defined as

Total uptime for a complete cycle

A =
c (Total uptime for) _  Total downtime for, (1.1.13)

a complete cycle a complete cycle

where a complete cycle of the aystem begins with a new operative system
and ends until failure, followed by a renewal or complete repair.

Goldstein considered system designs and studied the following
probabilistic inequality

P{A31-¢} » 1-8 (1.1.14)

where 0<€e¢<1 and 0<d<1l . He derived some expressions for repairable
syétems with independent exponential lifetime and exponential repair  time,
so that the technique of Laplace transform was applicable to give an Erlang
distribution (Parzen (1962)). However no numerical illustrations were
given. The generalization of independent exponential -distribution to more
general distributions, such as Weibull distribution (see Appendix 1), is
not ‘straight forward, because the Laplace transform technique does not give

a closed form solution.

In this research, various concepts of system availability are studied
as random variables, and they will be called stochastic availabilities, in
order to emphasize their random nature. In particular, Goldstein's model
and approach are extended to a general repairable system with maintenance
schedule such that the failure rate is both age and maintenance dependent.




8§ 1.2 MAINTENANCE AND FAILURE RATE

As we have seen so far, the various definitions and expressions of system
availability have no explicit dependence on the maintenance or repairs.
Host authors have treated failure and repair as independent random variables,
neither of which depends on the maintenance. In other words, the system
failure rate is not affected by any preventive maintenance. The use of
failure rate geems to be a natural way of system failure analysis because a
complete knowledge is obtained once we know or specify the failure rate
(see Theorem 2.2.1).

The purpose of preventive maintenance for repairable system is most
likely to improve’' the system if possible. However the failure rate may be
disturbed by the number of maintenancs cjerations. Various replacement
and maintenance policies had been proposed (Barlow and Proschan (1965);
Jorgenson, McCall and Radner (1967); and Pierskalla and Vaelker (1976)).
Basically, an optimum replacement policy is to choose a set of time intervals
between two maintenance periods at which replacements are to take place
such as to minimize an expected cost during a given finite or infinite.time.
Note that the cost is a deterministic quantity. Racently, Nguyen and Murthy
(1981) have extended Barlow and Hunter's (1960) two replacement policies to
a case where the failure rate is an increasing function with the number of
repairs. A further generalization of the optimization problem to failure
rate dependence on the number of previous repairs and on the times when they
took place was proposed by Shaw, Ebrahimian and Chan {(1981).

As with availability, the cost to be minimized can be generalized to
a random variable approach by modifying the definitions of stochastic
availability to be associated with costs, so that minimizing the probability
of the so called stochastic cost is equivalent to maximizing that of the
stochastic availability (see Chapter S).

-
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§ 1.3 SUMMARY

In this research various concepts of stochastic availability for a
general repairable system model with a maintenance schedule and an age and
maintenance dependent failure rate are studied and are applied to system
design. In Chapter 2, the generdl system model is proposed. The system
failure rate is reduced and altered after each preventive maintenance.

Two types of failure reduction are considered. The lifetime distributions
forboth failure reduction types are derived. In Chapter 3, various
stochastic availabilities are defined. The probability distributions of
the stochastic availabilities are derived. In Chapter 4, optimum system
designs are considered using the concept of maximizing the probability of
stochastic availability and probabilistic inequality. In particular,
optimum operative-cycle time and age replacement time are determined for a
periodic operative-maintenance policy. Numerical examples illustrate the

failure rate characteristics and variations of system parameters and age
replacement time. A PASCAL computer program is developed for the computation
of the prbbahility distributions of stochastic availabilities. In Chapter 5,
the concept is further extended to the so called generalized stochastic
availability and the equivalent stochastic cost function in probabilistic
optimization. In Chapter 6, the work is concluded with a discussion on
possible extensions. Appendix 1 gives a summary of Weibull distribution.
Appendix 2 is a listing of the PASCAL computer program.

*




CHAPTER 2

SYSTEM MODEL

§ 2.1 A REPAIRABLE SYSTEM WITH MAINTENANCE SCHEDULE

We shall study a repairable syttem with a maintenance schedule as ‘
shown in Fig. 2.1.1. ¥

Naintenance
State

Failure during

4 ' Operation
. Renewal/Replacement
Op;:::ive Failure
State
3 )
2 £
q
:{ ) -Fig. 2.1.1 State transition diagram of a repairable system
4 -with a maintenance schedule.
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The system starts its mission when it is new and it follows an operative
and maintenance schedule before it fails. Thus the system is represented by
an UP operative state () of normal operation, a DOWN maintenance state ()
of preventive maintenance. By preventive maintenance we mean that the system
is not replaced by a new one complately, but.simply a replacement of parts,
‘minors repairs or even just inspections. A DOWN failure state (® accounts
for the system failure or breakdown. A new aystem is set to operate for a
-time period called the operative-cycle time (u) and the system is said to be
in the gperative-cycle (or :'simply, the O-cycle). Then it is brought to
preventive maintenance for a duration called the maintenance-cycle time (d)
and the system is in the maintenance-cycle (the lM-cycle). After the
maintenance operation the system is back to normal operation. The transition

O=®

* i3 called an ggeiative—maintenance cycle (an O~M cycle). The system may
fail during the O=cycle or during the M-cycle. When the system breaks down,

it is in the failure state (f) , and it will only resume its normal operation
as a new system after a complete repair, renewal or replacement of the entire
system. The . time spent for such a renewal is assumed to be a random variable
called the repair time TF . If the transition

®—0
is completed, the system is said to have gone through a complete cycle and
the entire system is considered to be a new system again.

A schedule of the O=ll cycles, operative=cycle time and Maintenance-cycle
-time is shown in .Fig. 2.1.2.
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—— v N J .
Cycle : ‘1 2 n

‘Fig. 2.1.2 System operative-maintenance schedule before failure.

We have used the following notations in Fig. 2.1.2 :

to!O

O-Cycles : [to"l) , (tl,ez) v see s [tn_l.tn) y eee
M—C{cles : ftl.tl) , ftz.ta) ) eee [tn , tn) » ese
0=M Cycles : [to,tl) ' [tl,tz) voeee s L8 _108) 5 oo
Operative-cycle - time : ul’ti'to » ese un'eh-tn-l s ooe
Maintenance-cycle time : -dlstl- IR dnstn-eh s ooa

121
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In particular, we shall mainly interest in the periodic
operative-maintenance schedule (see also § 4.1), namely,

ul.uz.-.o.un.ooo!u

dl-da-boo-dn'-oo.d

tn = n.tl

t18u+d 4

NOTE : All :time variables (deterministic or random) are assumed
non-negative. Therefore, all probability density functions
and failure rate functioms are defined to be zero for any
negative time. We shall not specify this assumption explicitly
- in all expressions.
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§ 2.2 FAILURE RATE WITH AGE AND MAINTENANCE DEPENDENCE

The lifetime of the repairable system before failure is a random variable
T with a distribution function (d.f.) F(.) known as the failure distribution
function (Barlow and Proschan (1965)). Usually, F(.) is assumed to be
absolutely continuous so that there exists a probability demsity function
(p.d.f.) given by

dF(t)

(t) = Tt (2.2.1)
or,

F(t) = 5: f(x) dx (2.2.2)
Note that

£{(t) = O for t<0
and

F(g) = O for t <0

The system failure rate function (f.r.) or the system hazard rate function
r(.) is defined by

£(t)

r(t) s
. _ dr(t)
dt
=  ————— (2.2.4)
R(%)
where -
R(t) = 1- F(t) T F(t) (2.2.5)

is called the system reliability function (r.f.).

From Eq.(2.2.4), we have .

%ﬁ + r(t)R(t) = O
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Solving,

R(t) = 1 - F(t) = exp{-I: r(x) dx}

R(Q) = 1

(2.2.6)
F(O) = ¢
Eq.(2.2.6) and (2.2.3) .give
f(t) = r(t)R(L) (2.2.7)
or
£(t) = r(t).exp{- [“ r(x) dx} (2.2.7%)
0

Eq.(2.2.7') is of fundamental importance.

In order to be a valid failure rate function, r(t) must satisfy the
following conditions :

r{t) = 0 , £<0 A

r(t) 2 0 ’ t)o

@
s r(x)dx = <
0

From Eq.(2.2.2), (2.2.6) and (2.2.7'), we see that F(.), f(.), and r(.)
are equally suitable for describing the failure distribution. In particular,
if we specify the failure rate, then the following theorem is obvious :

THEOREM 2.2.1

A failure rate function r(.) satisfying (2.2.8)

uniquely determines the failure distribution of the
syatem,
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-Since there are infinitely many failure laws, we shall choose a widely
useful one, namely, the Weibull type failure rate (Appendix 1), that is,

? the system lifetime T has a Weibull distribution :
: P.d.f. 2(t) = Fat™? exp (- £t") (2.2.9) ;
E D.f. F(t) = 1 - exp(=Xt%) (2.2.10)
i F.r. R(t) = Lag*? (2.2.11)
R.f. Rt) = expl=n¢) (2.2.12)

i In particular, !
(1) & = 1 (exponential case), constant failure rate; 2
(2) a = 2 (Rayleigh case), :linéar fajilure rate.

Therefore, the failure rate is gge‘degendent whenever o # 1 .
We shall study the Rayleigh case ( & = 2), or the linear failure rate,
because all other cases can be analyzed in the same way.

In order to allow the failure rate r(t) +to be dependent on the "
maintenance operations, the failure rate is assumed to change after each !
maintenance-cycle. Thus the failure rate is.piecewisely defined on each
0=l cycle in the following manner :

. .

rl(t) v té[to.tl)

y r(t) t€Lt,,t,) | B
:} r(t) = ﬁ : (2.2.13) !
» 4 r(t) ., tElt_jit)
. L E

h

b where

% rl(t). rz(t), cee rn(t), ces

e

' . is a sequence of Weibull type failure rates subjected to (2.2.8) , namely,
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r(8)30 , (830 , ..., r (a0 , ..
tl t2 tn (2.2.14)
rl(x)dx + } rz(x)dx * eee + rn(x)dx + se0 = QO
% % Cae1
The following form of the failure rate is proposed :
For n= 1.2.3. ss e
r(8) = REd .0 - AW, tele_,,t) (2.2.15)
where
D WO W Tt (2.2.16)
0<As AEAEA S o fA S .. < @ (2.2.17)
AR = AN, tele _,t) (2.2.18)
0 = Al ( AZ \( see \( An \< ses e (202019)
A, = Bpy * 8prpltyy) (2.2.20)

g, =9, g€ 0,1} , n=2,3,... (2.2.21)
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The failure rate r(t) so defined has discontinuities of "jump" type at
a countable set of points

to » tl p s tn 9 oo

and A(t) also has discontinuities at the same points representing a
reduction failure rate. Obviously, if there is no failure reduction, then

At) =0 - r(t) = r(t;A,a)

Thus the benefit of the maintenance schedule improves an aging system in the
sense that the system failure rate is reduced after each 0-=M cycle with a
tradeoff of shortening the mean lifetime because the A's which is a measure
of mean lifetime (Appendix 1, Eq.(Al.4)), increase with the number of

O-N cycles. For convenience, we define the following :

g(t;),a) = regular failure rate (3 R(t) . if A and & are constants)

r(t) = age and maintenance dependent failure rate
A(t) = fallure reduction function

g, = failure reduction factor

an = reduction jump-down

As an illustration we depict the shapes of g(t), A(t), and r(t) in
Fig. 2.2.1 for a Weibull type linear failure rate (&= 2),

When A(t)  is a step-like functibn, the r(t) has a constant slope
in. each interval. When A(t) is a-piecewise linear function, the r(t)
has a varying slope in each interval. This corresponds to a maintenance-

dependent failure rate parameter sequence {‘An} .




2(t)

Fig. 2.2.1(a)

0= [&1

Fig. 2.2.1(b)

r(t)

Fig. 2.2.1(c)

slope = 2A

Regular . linear failure rate.

II'.I'O.'..
T v t
0 tl ta t3 t4
Failure reduction function.
t
0 tl tz t3 t4

.Linear failure rate with failure reduction.

18
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3 § 2.3 FAILURE REDUCTION CRITERIA
]

' For a real, usually large, system, it is more efficient to perform
;‘ preventive maintenance on a periodic schedule in order to reduce management
!

- cost etc. It is therecfore reasonable to assume that the operative-cycle

‘i -times and maintenance-cycle . times are. fixed (Eq.(2.1.1)),
" u1=u2=.o.=un8...5u
.F = =2 =
"' dl = d2 coe = dn see d (2.3.1)

' tn = ntl s n=1,223,...

1

- - Furthermore, we may assume that

E_ .

A1=A2= oo e .Anz eve = ﬂ (2.3-2)

; and p
| g =8y = ceomg = .0 = g € [0,1) (2.3.3)

r Two special types of failure reduction are defined in the following :

TYPE 1 FIXED FAILURE REDUCTION
{

gfter each M-cycle the failure rate is reduced in a way that all -
jump-downs are the same in each 0~} cycle, or more precisely, '

Al = 0 )
D3 = Do+ A =27
> (2.3.4)

A, = Apy * A = (1.4

g€lo,1] J

where




« =2 - A =22tz (2.3.5)

The failure rate is.given by

[ 24t , tEltyt,)
2ht - A . tElE,t,)
L
rte) = {2¥E-20 . EElt,,t,) (2.3.6)
2Nt - (a-1)A  , tElt _,.t)
L :

The shape of r(t) is sketched in .Fig. 2.3.1. The r(t) given by
Eq.(2.3.6) ‘will be called the fixed reductuion piecewisely linear failure rate.

The case when the failure rate parameter A is not constant is also of
interest. We shall assume that A is actually maintenance-dependent,
namely, A varies in the form of an increasing sequence as in (2.2.17).
Thig is the case when the mean lifetime of the repaired system decreases
‘with the number of preventive maintenance carried out. (From Eq.{(Al,.4),
the mean lifetime is inversely proportional to the A's.) We shall
illustrate this case in .Fig. 4.4.8 where the A's are defined by Eq.(4.4.4).
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E 2 PROPORTIONAL FAILURE REDUCTION

After each M-cycle the failure rate is reduced such that each "jump-down"
is proportional to the value of the failure rate at that instant, namely,

’

A]_'o

z-rl( tl)

Pk

g.ra(tz) + g.rl(tl)

: b (2.3.7)
g.rn(tn) + eee + g.rl(tl)

s

where

g € [0,1] J

Thus,; for o =2,

r (€) = 24t

3 2
r?_(t) 20t - 2/\31:1
» (2.3.8)

ra(8) = 2At - 2Xg(t,+(1-g)t))

The shape of r(t) is sketched in .Fig. 2.3.2. The r(t) .given by
Eq.(2.3.8) will be called the proportional reduction piecewisely linear

failure rate.
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8 2.4 RELIABILITY FUNCLIONS
Rocall that the system reliability fumction R(t) is related to the
failure rate function r(t) by Eq.(2.2.6).
Define
*Q o$ o=l .
r(t) = Adt = regular failure rate (2.4.1)

o t
R(t) 3 exp(- Io r(x)dx) = regular reliability function (2.4.2)

For an age and maintenance dependent failure rate r(t) defined by
(2.2.13) = (2.2.21), we define

R(t) = exp(- I" r(x) dx ) (2.4.3)
(o}

and for ¢ ;tn-l ’

1:1 t2 L
R(t) = exp ( - ‘0 r(x)dx - st r(x)dx = ¢o0 = Jt' r(x)dx ) (2.4.4)
. 1

n=-1
n-1
[TT Rj(t )] exp( - I r(x)dx ) (2.4,4')
j=1 J n=-1
vhere (t
R,(€) = exp( - tj-lr(x)dx ) tG[tJ._l,'cJ.) , §=1,2,... (2.4.5)

If all 's in (2.2.17) are constant, then
r(e) = B(e) - A
which , together with Eq.(2.4.5), -give
t
R, (t) = exp( - | r.(x)dx )
J tiop d

= exp( - Iz R(x)ax ).exp([‘c-tj_I]Aj) (2.4.6)
j=1
Therefore, Eq.(2.4.4') becomes

n-1

R(t) = R(t).exp[Z (t. -tj 1 Aj + (t—tn_l)An] (2.4.7)

3=1

nalibibieiiintn




(1) FIXED REDUCTION HELIABILITY FUNCTION

for fixed reduction, (2.3.4) and (2.4.7) gives

R(t) = g(t).exp{ [gf (j-l)(tj-tj_l) + (n-l)(t-tn_l) ]A}

=1
For constant operative-=¢ycle and maintenance-cycle times (periodic

(2.4

operative-maintenance schedule),

l“ tn = notl (2.4.9)

1 we have,

k Q

: R(E) = R(t).exp[ (n=1)(t - %nt)A | (2.4.10)
@ =2 =mp R(t)=em( -Zt? + 2(n-1)(t-lint))g At)) (2.4.11)

-

T T O TS

(2) PROPORTIONAL REDUCTION RELIABILITY FUNCTION

29

For proportional reduction, with Tr(t) given by Eq.(2.3.9), we have,

 exp(~ R#t°) » t€[0,t,)

] exp (- A'tz + zA‘gtl(t-tl) ) , tG[tl,tz)
R(t) = «

exp(~ /\"t:2 +2 /\lg[t2+(1-g)t1]t - 2A‘g(ti+t§-gtlt2) ), t€[t .t3)

L (2.4.12)




8 2.5 PROBABILITY DENSITY FUNCTIONS

The probability density function f(t) of the lifetime T is related
to the failure rate r(t) and the reliability function R(t) by Eq.(2.2.7).

Define
g(t) = g(t)g(t) ® regular lifetime p.d.f. (2.5.1)
and
té[tn_l.tn) == £(t) = £ (t) = r (£IR(t) (2.5.2)
Thus,
4 -
£,(8) 3 r (£)R (t) »  tEfo,t))
f.a(t) 3 r,(£)R, (£)R,(¢) , tG[tl,ta)
£(t) = n-1 (2.5.3)
foey = r:n(t)Rn(t)” RJ.(tJ) , té[tn_l,tn)
. j’l
L [ ]
Note that
o
tE[o,tl) sumdp fl(t) = £(t) (2.5.4)

(1) FIXED REDUCTION PROBABILITY DENSITY FUNCTION

For fixed reduction failure rate, Eq.(2.3.6), (2.4.10) and (2.5.2)

give
o
XC I 2(t) - (r=1)A ) R(t) exp( (n=1) (t=%nt ) A ) (2.5.5)
Q
Q
= (£(%) = (n=1)\ R(%) ) exp( (n~1)(t~%nt,)A\ ) (2.5.5")

O=2 =5 A .!ZA'gtl
£.06) = [2Xt - (DA T exp( - Xe? + (ne1) (st A ) (2.5.6}

and the shape of f(t) is sketched in Fig.2.5.1.
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(2) DPROPOIYIONAL REDUCTION PROBALILITY DENSITY KUNCIION

- For proportional reduction failure rate, we have for X = 2 ,
" 'Zl\.t.cxp(- /\‘1:2) , t€ [O.‘l:l)

"I . . t 2 t
2 M{t=36))cexp |- t° + 2 gt (t-t,)] . €Lty ,t,)
re)=g Me-a(tyra-prtJemf- R [ ~2a(ty(1g) )t

+2[;(t +t omgt, t )] } » £ELE,,t,)

k
K
]

(

The shape of f(t) is sketched in Fig. 2.5.2,

(2.5.7)

* % B % »

Note that fl(t) and fz(t) are the same for both fixed and proportional
reductions for a given failure reduction factor g (see Fig. 2.5.1 and 2.5.2).
Suppose there is only one maintenance-cycle and a large operative-cycle time.
In this case both fixed and proportional reductions are equivalent. The
curves of ?’(t) and f(t) (for o = 2) are illusitrated in Fig. 2.5.3, and

° . ), 2

£(t) = 2Nt exp(=At%) , t)o (2.5.8)
2Nt exp(-2t?) , t€I0,t,)

£ ’{(2x‘t - Nep{-K% + (t=t)A} , t28, 3 A = 2ghe, 2039

Let t° be the point that both curves intersect, that is,

2(t%) - £(+%) = 0 (2.5.10)

or,

exp(-[t¢-t1]A) 2 1 -

2
2 X't? .
Expanding the exponential, we have approximately,

R 5
PR R

¢ = 3t [1 v fl1 4 =2 ] (2.5.11)
A
£f - ¢ i for large ¢t
- 1 T 2§ ge % (2.5.12)
= 0() (2.5.121)

1
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JU
| £ - @ -t} £, (2.5.13)
i, And
2(¢) > £(t) for t< t° (2.5.14)
[o]
£(t) D> £f(t) for t>t* (2.5.15)

We conclude that for large operative-cycle time and a single maintenance
operation, the lifetime probability density function with failurc reduction

is always greater than the regular lifetime p.d.f. whenever ¢ )>t1 , namely,
@ )

t2v =t => £(t) > £(t) (2.5.16)
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Fig. 2,5.3 Asymptotic behavior of lifetime p.d.f. for a
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§ 2.6 OPERATIVE TIME AND MAINTENANCE TIME DISTRIBUTIONS

We define an integer random variable Nt to be the number of O-=M cycles

before failure. It is obvious from Fig. 2.1.2 that

N, =n = T=t €l _,.t) (2.6.1)

for n= 1.2,3,... » and t°=°.

Note that for a renewal process (Parzen (1962)) the expectation of N, is

called the renewal function. We shall use the expected value of Nt R

namely, E( Nt) » to compute the approximate mean uptime and the approximate
mean lifetime for a periodic operative-maintenance schedule ( Eq.(2.6.22)

and (2.6,23) ).

Since the system may fail during the n"" O-cycle (i.e. in (t_,®) )
or during the ath M-cycle (i.e. in [cn,tn) ), we further define the
following two randowm variables Tuln and T din related to the system
lifetime T :

For n=12,3,...

'ru In 3 operative time bhefore failure in the nth O=cycle
(the nth O=cycle operative time)
. T din 3 maintenance time before failure in the nth M=cycle
(the nth M~cycle maintenance time)
such that

tn—-l * Tuln y if @-—@ when Nt=n

T = (2.6'3)

tn M len s if @—o@ when Nt=n

It is evident that




e S .

o ¢ Tain € Un (2.6.4)
and
o ¢ Tain € 4 (2.6.5)
Furthermore,
o¢ Taln < u, > Tajn = © (2.6.6)
o < Tain € 4 Sy Tain = Ya (2.6.7)

The relationship of T , Tu]n and rdm. is illustrated in ‘Fig. 2.6.1.

uin din
1]
' :
¢ bt {F + . e
o ‘tl tl D1 E cn : tn
' []
System b :zi '
lifetime |, or ’ !
[ i
T .
t t

Possible failure instant

.Fig. 2.6.1 .Lifetimes relationship before failure.
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Next, we shall compute the probability density functions of Tu and
Td|n » denoted respectively by

fT
ujn

in

and £

len

Suppose Nt = n and the p.d.f. of T assuues the shape shown in

Fig. 2.6.2 in which the

fn(t)

fn(t)- is defined by Eq.(2.5.2)-(2.5.3).

0

‘Fig. 2.6.2 ‘Lifetime probability density function in the nth O=ll cycle.

f (t) o (%)

Tu]n d{n
Dn
Un + Dn Un
Un + Dn

Un Dn

Un+Dn Un*Dn

£ t
0 u, o dn

Fig. 2.6.3 P.d.f, of T,

‘Fige 2.6,4 P.d.f. of T

In * djn *




Let Un and Dﬂ be the shaded areas in Fig.2.6.2, that is,
T
n
u, = fn(x)dx (2.6.8)
tn—l
and
t
n
<
n
Obviously,
p{n =n} = P{tn_l\<T(tn}
t
n
= fn(x)dx
tne1
- un +D (2.6.10)
The p.d.f.'s f,r and fT have the same shape as that of the
uln din
p.d.f. of T in [tn_l,tn) and [tn,tn) respectively. Both are depicted
in Fig.(2.6.3) and (2.6.4).
From Eq.(2.6.6) and (2.6.7), we have
. Un
pfog T-u[n("‘n} = p{ Tdmao} " TV (2.6.11)
D
P{0¢ Ty, {0} = P{Tu;n"“n}“ —2 (2.6.12)
n n

Then,

34
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j=1

]
i
Tty %) , 0€tlu i
U +0D n 1
n n
D
n t =
1 T ' “n (2.6.13)
n n
{ o} , otherwise
F |
n R t= 0
U +D !
n n j
£ (T +t)
n'n » (0] t d
| == {tgq, (2.6.14)
n n
» O ’ otherwise
Furthermore, from Eq.(2.5.3),
r v
n
Un = fn(x) dx
J 1:n-:l.
'tn n-1
= . rn(x)Rn(x) ﬂ Rj(tj) dx
J “n-1 j=1
n=1
= ﬂ R, (t;) [ 1-r(e) ] (2.6.15)
=1 i
rtn J
. D = f (x) dx
n n
1 J T,
: R rt, n-1 |
- . r_(x)R_(x) ]—| R (t,) dx |
/T a1 g
J f
n=1 ?
|
- |T] Ryt || Ryem-ryce] (2.6.16) |
: |
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Eq. (2.6.10) and (2.6.16) give i

P{Nt-n} = Un+Dn

n=1l
= [ﬂ RJ(tJ) [ l- Rn(tn) ] (2.6.17)

J=1
In particular,

Nn=1 =mp P {Nt - 1} = 1-R(t) (2.6.18)

The average number of O-M cycles is given by

®»
E [Nt] s Z n.P{Nt-n}
n=l
- [1 - R (%)) ] . 2[ R (£)) = R (£)Ry(%,) ]
+ 3( R, (£, )Ry(t,) = Ry (£)R,(£,)Ry(E,) ]
+ oo e
+ o o0
[o.2) n
2 1 + Z [ﬂ R, (t)) ] (2.6.19)
n=1 | j=l
Or,
’ ® n S
E(n ) -1 = Z ‘”‘"[" Z Y ry(x)dx (2.6.19')
ey ja1 %1
Similarly, the kth moment of Nt is given by
[ )
Ky - k
E(nS) = 32 n.Pthan}
n=l
2 n=1
- Kk
Z nK, n Ry(t)) [1 - R (£) ] (2.6.20)
n=l J=1

et
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Note that if there is no maintenance operation, or the operative-cycle
‘time becomes infinite, then
t, -» @ iy R(t ) -=0
1 11
and Eq.(2.6.19) becomes
lim E( Nt ] = 1 (2.6.21)
t,» ®
1l
That is, there is only one O=cycle. {(See Table 4.4.1 and Fig. 4.4.3 for
a numerical illustxration).
We may use the mean 0=l cycles E['Nt ] to compute the approximate
mean uptime and the approximate mean lifetime for a periodic operative-
maintenance schedule ( (2.1.1) ).
Define
Approximate mean uptime = u.( Ef N, ]-%) (2.6.22)
(2.6.23)

Approximate mean lifetime 3 (u + d ).( EENt] - %)

We shall see that Eq.(2.6.22) and (2.6.23) give consistent results as
u » [ +] (See Table 4.401 and Fig. 4.4'4—4.405)9
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§ 2.7 REPAIR TIKE DISTRIBUTION

WVhen ths system fails, it is in the (::>'stste for a complete repair,
replacoment or roenewal. The time spent is a random variable called the
repair time TF with distribution function

P

and probability density function

p(t)

For simplicity, TF‘ is agsumed to statistically independent of the system
-lifetime T , and TF is expenentially distributed,

p(t) = p exp( - put) » t20 (2.7.1)

Pt) = 1-exm( - pt) , t30 (2.7.2)

We shall see that other distributions may be used and the independence
assumption may be dropped, but we have to handle double integrals, instead

of single integrals in evaluating the probability of stochastic availability
(see § 3.2).
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CHAPTER 3

STOCHASTIC AVAILABILITY

3 3.1 DEFINITIONS OF STOCHASTIC AVAILABILITIES

We define the following random variables with reference to Fig. 2.1.2

and 2.6.1 :

Tup € total uptime before failure when the system is operative

Tdown 3 total downtime during which the system is not operative
n=-1

Tupln = uj + Tuln _ v
J=1 n=1,2,3,... ‘
n=1

T d. + T + T

down|n Ja1 J din F

where the summations are defined to be zero for n = 1.

The following stochastic availabilities (A) are defined :

(1) Stochastic Cycle Availability (Stochastic Availability for a complete
. Renewal Cycle) Ac '

A &5 ——t2a (3.1.1)

39
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(2) Stochastic Availability for the n°" O0-M Cycle A

t

T
up |n

MNan ® 4 ®
¢ Tupln * Tdownln

n=1

=1

n-1 nN=1

z Ifj+Tuln+§ dJ+'l'd|n+’rF

J=1 J=1

(3) Stochastic Availability for the n™ O-cycle 4,

. n-1
“j + Tuln

J=1

Aon = 1 e
Zuj +Tu|n+Zdj -1-'].‘F
J=l Jal
= Ay
=n
t l'rd.n.o

(4) Stochastic Availability for the n'" H-cycle A,
n

n

>

=1
AM 3 n n
" -
Z uj-t-z dj+Td|n+TF
j-l jsl
" AN L
ujn n

N, =n

(3.1.2)

(3.1.2')

(3.1.3)

(3.1.3')




(5) Stochastic Availabilig at a Finite Time in the nth O=i1 Cyecle At

(Finite .Time Stochastic Availability) n
r n=1 A
Z u; +~min(t,'ru‘n)
=1 , tstn_l-rt( ‘t’n
n=1 A n=-1
Z ug + min(t,T,, ) + Z d; + Ty
" J=1 Jj=1
An = { n (3.1-5)
u
24 .
=l , =T+t < t
n n
n n=1 v
Z uy + Z a +min(t, Ty, ) + Tp
\ J=1 J=1
Hence,
t=T .
n
Ay = A;'.tn (3.1.5")
n
(6) sStochastic Availability for an Age Replacement Time A:g
to uptime before failure in [Q,t;)
AAR 3 (3.1.6)
uptime before failure

" in [o'tn) Total downtime

where t.. is the age replacement time. See 8 4.2 for more detail.

L BN B B B R 2R 2R 2R J

Vie note that the gstochastic availabilities defined above are in the form

- uptime
A uptime + downtime

(3.1.7)

where the uptime means that the system is operative and the downtime means
that it is not operative such as in the maintenance or failure state.
Since the uptime and/or the downtime are in general, nonnegative random
variables, the stochastic availability is therefore random and less than unity.
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§ 3.2 PROBABILITY DISTRIBUTIONS OF STOCHASTIC AVAILIADILITY

We have defined various stochastic availabilities A- in thc provious
section. We shall derive the probability of the form

P{adi-t} , o<ic1

in this section and in § 4.2. We shall begin with the gtochastic cycle
availability.

By the total probability theorem,
P { A 21-¢ }

P{a_31-¢ | n=n . p{ Nt-n}

®

L

i p{a 21-¢} p{nan} (3.2.1)

=l

P{a 31-i | Ty yn™ | p{ rd‘n-o}
2

P{a 31-i | 'ru.nsun} P{ Ty

} P{Nt-n}

~T 1T

P{ A D 1—2} P{T,, =0
{ on/ { d|n } P{Ntan} (3.2.2)
n=1 P {AMnZ l-it P {Tulnaun}
Consider Aq 21-¢
n
> n=-1
uj + Tu|n
j=1
n=l n-1 2 1-¢
Zu +Tum+ZdJ+TF
Jll jnl
-1 n-1
= £ £ n _
TF \< 1-¢ Tu‘n * T-f s Z UJ. Z dj (3.2.3)




—N e e T T

The domain of definition of Tuln and TF is shown in Fig. 3.2.1.

Let f’l‘ T (.,.) be the joint probability density function of Tu in and T
uin’°F

By the independence assumption (E 2.7), we have

£, (x,y) = f (x)p(y) (3.2.4)
Tuln’TF Tuln
Define
(+#) _ n=l 1-¢
o = max4 0, = u, +TZd (3.2.5)
J=1 J j=1 J
u'’" imax{u,-_ u, + df (3.2.6)
n n j=l J £ jal.'j
And
(+) _ (+)
tn-l = tn-l + 0 n=1
= max{t ., $3_4q} (3.2.7)
n: o1 9
t(-) = t +u(')
n n=1 n
ln-l
= max [T, ?:dj} (3.2.8)
J=1
Then

' j=1 j=1
= f (x,7) dxdy
i ff Tuln’TF
4
1
i G (=) n-1 n-1
, u . -
: n Tf?“l-:Z“J Zdj
po J=1 =l
L = f (x)
Tu'n ply) dy ax
. =0 *) y=0
, “1(1-)
! . ¢ n=1
. = f'l‘ (x) p( I-_E( x+'t'.n_1 ) - 1—'_?: dJ) dx
°(+) ujn J=1
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Let =z =x + tn-l and from Eq.(2.6.13), we have
o)
n 1 (P n-1
P{ Ay 2 1-5} = 55 £a(2) (—z - —- =2 d ) az (3.2.9)
n 1:(-0-) n n Jal
n
s 2 (3.2.10)
U +D
Next, consider !
Am Z 1-¢
n ]
n ]
u 1
LY -
Jj=1 >
n n-1 z 1-¢
z u, + } d. + T + T
jaL 3 =T 9 uin F
n-l
T -+ T - d. (302.11)
F din ~ J=1 J stl A
The domain of definition of Td]n and ‘1‘F is shown in Fig. 3.2.2.
Let f’l‘ (ey.) be the joint probability density function of
din’"°F
T djn and TF and by the independence assumption (§ 2.7),
f (%,5) = £ (x)p(y) (3.2.12)
Tain* TF Tain
Let
(-) &=l
d H max{ 0, mm{d . E u } } (3.2.13)
1-c Ja1 J
t(') = T 4 d(-)
n n
¢ n n
= max{min{tn, tn+-i:t-z uj-z dj}’ ?n} (3.2.14)
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Fig. 3.2.2 Domain of definition of len and 'I‘F .
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Then,
SEREEL
$ iy -5
= P [ T + T — U, - }
F djn ¥ 1-% &= ‘s d
= by (xuy) dxdy
([ =, .=
t%_) £ n n-1
dn -x+1-.-—i§uj -gldj
- £2 (%) = p(y) dy dx
din
x=0 y=0
d(-)
n . ¢ n n=-1
= fp (%) p( -X +1—_?qu -.Zdj ) dx
0 djn J=1 j=1

gn P (-t ) + 235 ) ax
= f (x) -(x+ + u,
0 len n l.t.j=1‘]

Let 2z = x + Eh and from Eq.(2.6.14), we have

(=)
n n

[ @ Pl-ze=du )z (3249
en n n Jj=1 J

p{ay 31 -}

(3.2.16)

| From Eq.(3.2.1), (3.2.2), (3.2.10), (3.2.16), (2.6.11) and (2.6.12), we

have
Unqha*'nniix

2
(Un«l-Dn)

P{An>,l -t} = (3.2.17)

Eq.(3.2.17) and (2.6.10) give the probability distribution of the
stochastic cycle availability :




bahatha b

A4
®
U QL + D 1)
P { Ayl -5}-Z -2 = (3.2.18)
n=1 U +D
n n
The finite time stochastic availability can be computed similarly by
the following changes (see Eg.(3.1.5') and (3.1.5")) :
. A (A
{ u b min(t,u) o, oKtst-t o (u (3.2.19)
T, min(t,tn)
v v
d_ + min(t,d ) , o tst-x (d
n n n n (3.2.20)
t » min(t,t )
n n
(=) (€) - . 1 2=t
t, " b+ t 7 & max{min(t,t), 32 _d.
(=) ’(‘t) . =171 . »n n (3.2.21)
tn [ tn = max{min[ mz.n(t,tn), tn + -J.—__-{j;luj -Edjl, tn}
(t)
(t
t .| " g . &t )
(un > un = fn(z) P(r{z --i:i-z'__idj) dz
&) = .
““n
() } (3.2.22)
n [ n
t _ 1 1
ﬂn o] ﬂn = Lc £.(2) J)( -z+T-—i'Z;uj) dz
p n Jj=
.
Then,

t
U 7w, +n) €[t g0t

p{ aty1 -e} = (3.2.23)
n DE7w +0) , tefle.t)

The probabiliﬁr distribution pf the stochastic availability for an
age replacement time will be derived in 8 4.2 (Eq.(4.2.9)).

The probability distributions are summarized in the following :
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! P{N, -n} = U +0D i
. n n
- P{'r -o} = pfogr, <u} = U/ (UD)
. uln’ n} = P{Q<Td|n€dn} = Dn/(un"'nn)
' P{Aon’ -t} = U/ (U D)
P{A.Mn;].-i] = D /(U +D)
Pia z1-eta (uU +D9)/(U+D )2
Pfa31-¢} = Z(U‘U +0. 8 (U +n
U su +D) , t€fE ;%)
t
A/ v, tEfet)

% k-1 K-1
P{AAg 21 -i} §m:1(un'11n+n nf)n)/(una,nn) +?1K +[1-§(un+n U, _tZu Zd )

P {a° 21 -t}

tn tn
U = & fn(z)dz Dn = |e fn(z)dz
n n-| n
(=) ( ) A
T n—l :
n £ 1
(u” ) Lu) fn(Z)d:,(l-i.z - Zd yaz ; ﬂn " e ot (Z)&'Z * 1-:%“ oz |
n-i n J 3
() (t) i
L - f 8 e (it - 25 e s 98 = [ P (afles &5, :
n £+ "n l-t = 3 Je ~<3d P
n-i n I
i
(+) 1=t =) () =) () |
el T max{tn 1’ T4 ldJ} ot =Ty itatn Pt =t ‘h-tn |
1 tit)s imin(tt),‘Zd} :
3 (€) [mta] = & I
- t = max minmj.n(tt) t  — d }
4 n l-t’j T 5 S3 9 f

F(.) = repair time d.f. |

o<e<1




& 3.3 ASYMPTOTIC DISTRILUTION

We shall study the behavior of P{ Ac; 1—2} as the operative-cycle time
increases indefinitely (that is, no maintenance, ulntl - ® ). Thisg
asymptotic value will be denoted by

P
@

Recall from Eq.(3.2,18),

E ¢ 3]
» Py = 1.:1-5.:::“9 {Aczl—i} = flimm Z (U +0 B )/(U_+D )
3 1 1 n=1l
L.
= .lim ‘u'l (3.3.1)
f . T, H®
, 1 T .
E = lim ‘ b1 (2) Pt 2)az
] T, ‘0
' ®
s I 2(t) J’(f—- t) at (3.3.2)
o oy
2 -Since
3 Q
: f(t) = X‘at“'l exp( -At") (3.3.3)
' £ ¢t
T- P(m t) = 1 - exp(- ﬁ? ) (3.3.4)
Then ©
] dal « I £t
», Py = So Xt exp(- £t ll-exp(-%)]dt
[« o]
= 1 - s Rat ! exp(= %E-E) dt
o =
gcn (z 2 At)
s el o uf
)3 = 1 = X z exp(= z) exp(= === 2z) dz
: ; 0 A(l=%)
71
; = 1 = x{“td-l exP(- t')} € (3.3.5)
: gy
where ©
X’ {x(t)} L S x(t)exp(-st) dt = X(s) (3.3.6)
0

is the Laplace transform, or

L x(t) e X(s)
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CASE1 o =1
P =t ~L{emiu} ]|, RE/A/(1=¢)
= 1 —
T s+ 1| s =pt/A/(1-5)

- i/ - (3.3.7)

UM + L (1-8)/8 1/p)
t = '/2 === PCD = % (3.3.8)

/3 + 1/p
= A® (3.3.8")

Eq.(3.3.7)-(3.3.8) are the same as obtained by Martz’ (1971) in Eq.(1.1.9)
and (1.1.10).

CASE 2 &=2

2
From standard Laplace transform table,
exp(-tz) > 4% exp(%sz) erfe(Xs) (3.3.10)
where ) ® )
erfe(x) S =— s exp(=-z")dz (3.3.11)
J* Jx

is the complementary error function (see e.g. Abramowitz and Stegun (1972))
Apply the differentiation theorem for Laplace transform to Eq.(3.3.10),

-2t em(-t)) o> ST L [exp(*/zsa) erte(ys) |

%S
d ., 2 2 2
= J/r Es-{exp(/zs )[1 -— s exp(=-z~)dz ] }

R, ¢
= %4/K s e::p(%az) erfc(¥s)

o

+ /T exp(4s®) ( = 2= exp(~Y%s2) ) (%)
/7

= -1 +%JF 8 exp(ls®) erfc(ls) (3.3.12)




j

Substituting Lq.(3.3.12) into Lq.(3.3.9),

— 2 s
P a /T (2) exp((2)°) erfe(d) l ue
@® 2 2 2 s 'Ml—:)

i Jrs exp(sa) erfc(s) (3.3.13)

1 3
2A(1-¢)

8 =

Some asymptotic values are tabulated in Table 3.3.1.

» 4 A ful s erfc(s) P ©

4

& 0.1 0.1 1 5/9 0.43211° 0.5794

{ 0.1 0.05 | 1 10/9 - | 0.11611 0.7859

- 0.1 0.1 2 10/9 | 0.11611 0.7859

‘ 0.1 0.1 1.5 | s/6 0.23878 0.7063

F 0.15 | 0.1 1 15/17 | 0.21227 { 0.7231

Table 3.3.1 Some asymptotic probability values of
stochastic cycle availability.
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CHAPTER 4

OPTIMUM SYSTEM DESIGN

8 4.1 PERIODIC OPERATIV?—MAINTENANCE POLICY

We have mentioned in § 2.3 that for the case of system performance and
management, it is more efficient to have a periodic operative-maintenance
schedule, namely, constant cperative-cycle time u and constant maintenance-
cycle time d (Eq.(2.1.1)). Normally, the maintenance-cycle time d is
more or less.fixed by the system parameters and we may free to choose an
optimum operative-cycle time u” such that certain performance index is
satisfied in order to give an optimum system.

Classically, as a performance index, the minimization of a long term
average operating cost or the maximization of the system availability has
been proposed (Barlow and Proschan (1965)). Since we have defined
availability as a random varocable, we may choose the criterion of maximizing
the probability of stochastic availability with respect to the operative-
cycle time to be an optimum policy. In this case we shall have a
probabilistic guarantee instead of using averaged quantities. We shacll see
in Chapter 5 that this concept is equivalent to that of minimizing an
appropriate system cost function.

If we plot P{AcZJ. -:i versus u where Ac is the stochastic cycle
availability and 0<t< 1, we expect the following :

(1) If there is no failure reduction, P{Ac;.l-t} increases with u because
the more frequent the number of preventive maintenance, the less is the
availability.

(2) If there is a failure reduction due to the maintenance operations, there
»
may exist an u  such that P{Ac;l-i} is a maximum,
(3) As u. increases indefinitely, there is essentially one operative cycle

and no maintenance operation, therefore, (see § 3.3)

n P{A Y1-tf = P
Uu-r®o

@

53
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The above reasoning is illustrated in .Fig. 4.1.1 and the conjecture

will justified by examples in § 4,4 -

l_sm o « @ =
no failure reduction

[

P L R I S S e

u

g
g

Fig. 4.1.1 Probability of stochastic cycle availability versus
constant operative~cycle time for periodic 0=} schedule.




From TFig. 4.1.1, we may choosc an optimum operative-cycle time u in
one of the following criteria :

(a) If there a failure reduction, choose

*

u=u
(4.1.1)
where max P{A 21-2}
()
u
is achieved.
(b) If there is a failure reduction, choose u such that
P{A21-t121-~8 for upu”
{4 ; YR (4.1.2)
where &wn'l'(Pm“r) , d>0

(¢) If there is no failure reduction, choose u to be the first time

such that the total operation cost is as small as possible, namely,
p{a21-¢{21-9

¢ } NR (4.1.3)

where JNR-I-(PQ-S) , &0

The above criteria apply the concept of maximizing the probability of
stochastic cycle availability and probabilistic inequalities in system
design. Other stochastic availabilities may be used. In particular,
the stochastic availability for an age replacement time will be considered
in § 4.2 and the concepts will illustrated numerically in § 4.4, Ue
shali show that these concepts are equivalent to those of minimizing the
probability of an appropriate cost function and the corresponding
probabilistic inequalities involving this cost function in Chapter S.




8 4.2 AGE REPLACEMENT POLICY

When the sytem failure rate increases with age and system failure is
cogtly, it is usually scheduled to replace or renewal the entire systom
before it has aged too pgreatly. This is called an age replacement policy
(Carlow and Proschan (1965)) which replaces the system at a time tn after
its installation or at failure, whichever occurs first. 'The time tR is
called the age replacement time. Ve shall find an age replacement time for
the repairable csywtiem with an age and maintenance dependent failure rate
ugsing the concept of stochastic availability.

Suppose the age replacement time tR is chosen to be at the end of the
Kth operative~cycle (Fig. 4.2.1), that is, the system is replaced instead of
doing preventive maintenance after the Kth O=cycle, where the value of K ,

or equivalently, tn is to be determined. We have, from Fig. 4.2.1,

R K-1
t = = t = u. + d (4.2.1)
R tl' K EJ%J
dK g 0 (4.2.2)

age replacement time tR
\

o U g (] W L) iy
——r —§— X t =  time
-
=0 % % Y1 T

dxio

Fig. 4.2.1 An age replacement schedule.




Define gstochastic availabilitz for an age replacement tinmge tR ac
N uptime before failure in [O,tR)
AAJI: s (4.2.3)
uptime before failure in [O,tn) + total downtime
Note that tR
tR-OCD
Let T denotes the system lifetime, then
fDr n = 1.2’3.000,1{ ] T e ttn_lltn)
let nel
E u, + T
tR o1 J ujn 1
Z u, + T + Z d, + T + T
51 J uln F=1 J din F
N E
Ar‘lt-n An , (4.2.5")
where
g [ ] -* .
4. 3 0 and Td‘x 0 (4.2.5%)
For T)tR (= tK = tl()’ .with dl( s 0,
let K
ty jzl %
Z uj + E dj + TF
j-l j=1
K
]
J=1
a with 0 (4.2.6")




Congider
‘ o]
. P{AARBJ.-EI T;tR}
- {:u N S I | 1-:}
J=1
, X
= P{ TF\< J.-.‘,.L-uj - tR}
J=1
=P(—$—Z}{:u -t ) (4.2.7)
l-¢ 4 J R b
j=1
Pt B
a ( ——— u, - d. ) (4.2.7')
1-=-3 o1 3 §=1 J
P wvhere
i
' @(t) = l-exp(-pt) , £20
! . is the distribution function of the repair time (Eq.(2.7.2)).
[' Note that

| 4 50 = D =0 (4.2.8)

Now we compute the probability of the stochastic availability for an age
replacement time. DBy the total probability theorem, Eq.(4.2.5)-(4.2.3),
and the probability distributions summary in & 3.2,

‘R
' P{AAR?J.-i}

i {Azg 21-¢ ‘ N =n} {Ntan} + iP{A:ng-E ‘ Nt=“} P {Ngnf
n=l NaK+L
K
L ¢
n=l

}P{nxsn} i P{At l—£‘T;tR} P{N=n}

t
U D & . K K=1
- Z il * nﬁn . Z:KJ(Ii_t zd)(u + D)

n=) Un + Dn n=K+1 j=1 J J=1

n=K4+1

K-1

%&4-‘“ f _t:u-:d)[l-:(u +D)]

J=1 n n J=1 " j=1

[}
X
I Il
[




K=1 K~-1 I K=l
u + D ,
-z _rx}}l_*ﬁ_ngr_x* u,, + [1-5 (Un+Dn) -U,(] F(-&‘-s u,-E d.)
n=l n n * n=1 ! j=1 9 j=1 Y
]
(4.2.9) ',
As t, » @, i.e. K+ @, we have P
V
:1im AtR (4.2.10) a
4 AR = Ac . ele L
tR-o @ !
and
¢ o . .
P{Am;1-a} = p{Aczl-s} (4.2.11)
For a periodic operative-maintenance schedule, we expect that the graph
of Pi AARZJ.-Ek versus tR to have the shapes shown in Fig. 4.2.2 for

system with failure reduction. The curves are justified in § 4.4, These
curves are similar to those in Fig. 4.l.1l. Hence we propose the following

age replacement policy :
t .
(A) If the plot of P{AAI; )1-:} versus t_ for a given u shows a

maximum, then choose

R

t.= ¢t
where R R
"ty (4.2.12)
ma.:: P i AAR > 1-¢
. tR
is achieved.
t
() If the plot of P{Aé;l—i} versus tR for a. given u shows a

maximum, then choose tR such that
et 1
R > > »
P{AAR) 1—:} 7 1 Jp for t, 2 tp
vhere f (4.2.13)
inl-(Pc +d) , 80
P = P{A >1-¢} (for the given u) )




LU
‘tR
(C) if the plot P{ AAR,zl'i} versus tR shows no peak, then choose
tR to be the first time such that
t
Ry 1 - -d
P{AAR,I i%? 1- 9
(4.2,14)

§ 3 1-(p =§) ,d>0

<

In any of the above cases, tR is chosen to be at the end of a
Kth O=cycle.

AR
»
u near u
o r I A s p
x”(qhn....’...i...k‘..r e e e ¢
Q } A '
* R )
4 : \ t u large

+ LIRS X
! |
3 ] '
: ' t
R
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.Fig. 4.2.2 Probability of age replacement stochastic availability
versus age replacement time for failure reduction case.
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Other types of age replaccment policies can be proposed. Usually,
system failure during operation is a serious problem than when it fails
during maintenance. A simple age replacement policy based on this idea
is stated below :

The repairable system with maintenance schedule is replaced
when the probability of system failure during operation is q ,
vhere q€(0,1), say, q =% . l

We have from Fig., 2.6.1, the probability distributions summary in § 3.2, :
and the total probability theoren,

P { Failure during operation } .
2 th
- Z P{Fanure in the n'® 0-i cycle I Ntzn} P{N_=a]
n=l
@D ) ) £
= Z p{rd‘nao} P{N,=n| ]

n=1

® .
= 2 Un (4.2.15)
n=l
D

T
. n
= z 51: fn(z)dz (4.2.15")

For an infinite operative-cycle time (no maintenance), u - w,

e o)
lim Z Un = SO flz)dz =1 (4.2.16) !

That is, the system will ultimately fail as expected. With the age
replacement tima tR chosen to be the end of an operative-cycle, the
probability curve P { Failure during aperation} versus tR is a A
monotonic increasing function (Eq.(4.2.15)), and is depicted in Fig. 4.2.3.




P{ Failure during opex-ation} j

|

. : tR

Fig. 4.2.3 Probability of failure during operation versus
age replacement . time.




8 4.3 COMPUTATION

We have studied a repairable system with age and maintenance failure rates,
stochastic availabilities, periodic operative-maintenance policy, and age {
replacement policy. We shall study various characteristics of the repairable !

system via examples.

In order to evaluate various probabilities of stochastic availabilities,
a computer program is developed for computational purpose. The program is
written in PASCAL language and is simulated by an APPLE II PLUS (1930 model)
microcomputer with 48K memory.

Hlormally we assume that the statistics of the system failure rate _
function are known or can be estimated. We shall mainly concern with the
periodic operative-maintenance policy, that is, fixed maintenance-cycle time
(d) and constant operative-cycle time (u) . Variable operative- or
maintenance- cycle times can be considered by a slight maédification of the

computer program.

The program has to evaluate -ihe prohability distributions of the

stochastic availabilities. In particular, the stochastic cycle availability
(Eq.(3.2.18)) involves an infinite summation. An upper limit of the
summation is assigried to be an input to the program and the program checks
the difference between two consecutive partial sums whether it is less than
1.0-7 which is the accuracy of the machine. Simpson's rule is used to

evaluate all the integrals with the number of integration points as an input.

The number of integration points is about 3C-50"in the examples (3 4.4).

The number of summation varies from 10 to 1000 or more and it depends on the
failure reduction type and failure reduction factor g . Since all
quantities involved in computation are nonnegative, various checks are made 'J
to ensure this nonnegativity. Underflow or division by zero is suppressed
to give correct results. -Since the machine has limited accuracy and low
speed, numerical -difficulties occur quite frequently, If the program were
written for a large computer with double precision, accuracy and speed will
be improved but with a tradeoff of higher cost.




The inputs to the computer program are :

(1) £ , 0d¢e<1
(2) & , usually o= 2

we

(3) ’\l , Aco , where /\n = "m - ( ’\cn - Al)exp(-(n-l)/lo). n=1,2,...
L Af A = '\a: , then /\n'ii\ = constant

(4) Reduction type :
0 = no reduction
1l = fixed reduction
2 = proportional reduction

(5) Reduction factor : 0fg§1
(6) MKaintenance-cycle time : d
(7) Operative~cycle time : u

(8) Haximum number of summation
(9) Integratior; points, e.g. 30.

The outputs from the program are :
(1) P.{Ach-t.',
(2) ECN I
(3)

! -
(4) P {AAR 21~ ‘
(s) p { 1
(6) P {
7y p{a 21-¢}
(8) P{MN, = n}
(9) Approximate mean uptime
{10) Approximate mean lifetime

A numerical illustration of the computer program is .given below.
A complete listing of the program is .given in Appendix 2.

-

——




UATE © a8RIC L4,

32

%%  STOCHASTIC AVAILABILITY XX

<xx FIXED REDUCTION xx>
REDUCTIOM FACTOR = 0.30000
£E= 0.10
aPLHA = 2
LANDA = 0.1000
MU = 1.0000
MAINTENANCE-CYCLE TIME = 0.01000
INTEGRATION = 34 POINTS
1
OPERATIVE-CYCLE TIME = 2.00000 _
N PLAC>I-E] ELNC(T)]I ART PLAAR] PLAO] PCAM] PCAMNI PEN(T)=N] j
1 0.005281  0.04 2,000 0.196705 0.134652 0.0018994 0.1344804 3.95958E-2 !
2 0.025384 0.19 4.010 0.338683 0.,283096 0.0024982 0.28351142 7,45501E-2
3 0.0882686 0.49 6,020 0.442228 0.418777 0,0029526 0.4187968 1.01117E-1
4 0.129450 0.96 8,030 0.5144613 0,525888 0.0032888 0.5255858 1.17100E-1
S 0.204088 1.57 10.040 0,563100 0.514410 0.0033316 0.6144296 1.22117E-~1
8§ 0,284313 2,28 12,050 0.594185 0.6858577 0.0037008 0.5855948 1,17430E-1
7 0,362329 3.01 14,060 0.513240 0,745339 0.0038123 0.7433783 1.0545¢E-1
8 0.432833 3.73 15,070 0.824385 0.792967 0.0038789 0.7929859 8.,91048E-~2
9 0.491782 4,37 18.080 0.530594 0.831574 0.0037111 0.8315%92% 7.11892E-2
10 0,538133 4,91 20.090 0.533874 0.8562872 0.0039147 0.8828907 S5.39357E-2
11 0,572528 5.33 22,100 0.433509 0.888245 0.0038982 0.8882522 3.88987E-2
12 0.596692 S.66 24,110 0.58356271 0,908812 0.0038655 0.9083285 2.67000£-2
13 0.461280% 5.88 25,120 0.835398 0,925485 0,0038200 0.92559010 1.748S7E-2
14 0.623033 6.04 28,130 0.836724 0.939002 0.0037847 0.9390177 1.09343E-2
15 0.4829219  &6.13 30,140 0.836754¢ 0.949943 0.,0037052 0.9499802 &8,53417E-3
16 0.832786  4.19 32,150 0.838772 0.938857 0.,0036409 0.9583719 3I.73I3F3IE-3
17 0.634751 +23 34,180 0.626770 0.956072 0,0035703 0.9650853 2.04153E-3
18 0.435783 4,23 38.170 0.838767 0.971925 0.0034987 0.9719337 1.05844E-3
1? 0.838307 +28 38,180 0.334764 0.975583 0.0034257 0.9766957 S.35445E-4
20 0.634338 4.25 40.190 0.436752 0.9805347 0.0033518 0.9805588 2.37031E-4
21 0.638674 6,25 42,200 0.838762 0.983589 0.0032777 0.9837007 1,18218E-4
22 0.8348725 6,27 44,210 0.4836761 0.984246 0.0032038 0.98582578 5,21078E-3
23 0.4836747  6.27 45,220 0.5836751 0.988329 9.0031303 0.9883393 2.20159E-S
24 0.635735 6,27 48,230 0.4346761 0.990033 0.0030587 0.9900427 8.91778E~S
25 0.338759 5.27 50,240 0.536761 0.991418 0.0029836 0.9914276 3.44387E~6
25 0,638780 6.27 52,230 0.836761 0,992559 0.0029136 0.9925576 1.29011E-6
27 0.638750  6.27 54,260 0.536751 0.993488 0.0028449 0.9934969 4.60882E~7
29 0.838761  6.27 56,270 0.636751 0.794259 0.0027774 0.9942854 1.57929E-~7
29 0,838751  8.27 58,280 0.4357561 0.994889 0.0027089 0.9948979 S5.19149E-8
OPERATIVE-CYCLE TIME = 2.00000 ;
PC SCA> 0.90 1 = 0.6347581s (291 ‘
MEAN O-M CYCLES = 6.26694
MEAN UPTIME = 1.15339€E1
MEAN LIFETIME = 1.15914E1

(2328t 83 333334338t ae i ets bR et s e b as bt s e s tieni sttt i titniitet sty

Table 4.3.1 Numerical illustration of the PASCAL computer program.




Lo
S 4.4 NUMERICAL EXAMPLLS

In this section ecxamples will be given to illustrate various concepts
developed so far and to explore the characteristics of the rcpairable system
with age and maintenance dependent failure rates. In particular, Fig. 4.1.1
and 4.2.2 are verified. The asymptotic values in Table 3.3.1 will be used
in all the examples.

EXAIPLE 4.4.1

We consider the repairable system with various failure reduction
criteria, namely,

(a) no reduction (NR)
(b) .fixed reduction (FR)
(c) proportional reduction (PR)

for a piecewisely linear failure rate with the following parameters :
&=2, €=0.1, A=0.1, p=1, d=0.01, g = 0.5

The failure rate functions for .fixed and proportional reduction are plotted
. in.Fig. 4.4.1. The values of P {'Ac;'o.g} , Ef Ny ), approximate mean ‘ 1
uptime (Eq.(2.6.22)) and approximate mean lifetime (Eq.(2.6.23)) for

(a) NR, (b) FR, and (c) PR are computed using the PASCAL computer progranm

(Appendix 2) for various operative-cycle.time u , and they are tabulated

in Table 4.4.1. !

P {A,20.9} is an increasing function of u for no reduction and it
has a maximum for both types of failure reduction. For all types of failure .
rates P { Acz 0.9} approach the asymptotic value P ® (= 0.5794, sce
Table 3.3.1). These curves are plotted in Fig. 4.4.2 which when compared
with Fig. 4.1.1, the statements made.in § 4.1.1 are verified.

From appendix 1, Eq.(Al.6), the regular no failure reduction Weibull
mean lifetime is

K
-LZ-,‘\_ = 8,86
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r(t)

slopes2(l-g)A*

Fixed reduction

2Xu "

A=0.1
g = 0.5

1 0 tlsu+d 2(u+d) 3(u+d) 4(u+d)

T

r(t)

2Au 1

PrgEortional reduction

A =0.1
g=0.5

—— $ 4 % t
0 (u+d) 2(u+d) 3(u+d) a(u+d)

Fig, 4.4.1 Linear failure rate for fixed ancd nroportional rcduction.
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This is the agymptotic value for an infinite operative-cycle time or when

there is no maintenance operation (only one operative-cycle). Thus,

as U—.Q,

Approximate mean uptime ~» /X /2/A (4.4.2)
Approximate mean lifetime —» J7X /2/i (4.4.3)

as indicated in Table 4.4.1. The graphs of E[ N, 3 versus u, the
approxinate mean uptime versus u , and the approximate mean lifetime versus
u are plotted in Fig. 4.4.3, 4.4.4, and 4,4.5 respectively.

E(x,. ] :
.-————;——-Proportional reduction (g=0.5)

Fixed reduction (g=0.5)

No reduction (or g=0)

w

1 2 3 a 5 6 7 8 9 10

‘Fig. 4.4.3 Mean O-il cycles versus operative=cycle time.

'—*!‘




Approximate mean uptirne

Approximate mean lifetime

//proportional reduction

il fixed recduction

10 {

9 +

8.8~~~ --/T-f_

no reduction

ALY
L}

" &

Y 1 2 3 4 5 6 7 8 9 10

Fig. 4.4.4 Approximate mean uptime versus operative-cycle time.

' a
> o ¢ —

117 ‘(/,proportional reduction
fixed reduction
101
9 4
8.86 K
ﬁ: no reduction
+ * * 4 + + + > = -
0 1l 2 3 4 5 6 7 8 9 10

Fig. 4.4.5 Approximate mean lifetime versus operative-cycle time.
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CRAIPLE  4.4,2

Ye shall study the characteristic of parameter variations of the
repairable system with {ixed reduction (proportional reduction is similar).
The values of P{ Ac>, l—i} versus the operative-cycle time u for of = 2
(fixed reduction) are computed by the PASCAL computer program and thecy are
tabulated in Table 4.4.2 for different variations of parameters :

E.A.P.d.s

The asymptotic values l)ao of the stochastic cycle availabilities have
bteen computed in Table 3.3.1. The corresponding curves are plotted.

(1) REDUCTIOM FACTOR VARIATION (z)

Fig. 4.4.6 depicts the variations of reduction factors g = 0, 0.5,
and 0.9 (columns (1), (2), and (3) in Table 4.4.2). The larger the
reduction factor the more frequency of preventive maintenance is favored
to improve the systen. Thus the optimum operative~cycle time u‘ is
shorter for larger g to have more maintenance-cycles. then there is
no failure reduction, that is, g = 0, u” approaches infinite.

Note that all curves approach asymptotically Pao .

(2) HAINTENANCE-CYCLE TIME VARIATION (4

The variations of maintenance-cycle time (d) is illustrated in
Fig. 4.4.7 (columns (2) and (4) in Table 4.4.2). The longer the d ,
the less availability of the system, hence it favors for a longer

optimum operative-cycle time u* .




2%

{ P{a 31 ~¢}

(= 2)  Fixed reduction
:0.0)01 }or joar o 0.1 | 0.1 0.1 | o0.15
A : 0.1 | 0.1 0.1 0.1 0.05 |.05f.10{ 0.1 0.1 0.1
! u Ju: 1 1 1 1 1 1 1.5 2 1
d: 0.01} 0.01 | 0.01 } 0.05 | 0.01 | 0.01 } 0.01 | 0.01 | 0.01
' gzo |05 lose [os |os5 {o5 |05 |05 |o.s

0.5} 0.4930} 0.5899} 0.7787] 0.1138} 0.7827] 0.6256) 0.7078} 0.7797} 0.7424
1 0.5379| 0.6287| 0.7921} 0.4386| 0.8195]| 0.7152| 0.7445| 0.3132| 0.7G675
F 1.5] 0.5%27| 0.6363| 0.7813| 0.5189| 0.8288| 0.7519| 0.7516]| 0.8187 0.7714
2 0.5600| 0.6368| 0.7663| 0.5528| 0.8318] 0.7719| 0.7520} 0.8201| 0.7702
2.5{ 0.5644| 0.6346| 0.7505| 0.5701] 0.8324]| 0.7841} 0.7500} 0.8185} 0.7674
3 0.5673| 0.6314| 0.7350] 0.5796| 0.8318] 0.7920{ 0.7470| 0.8160| 0.7639
3.5] 0.5694| 0.6277| 0.7203| 0.5849| 0.8305]| 0.7973| 0.7437{ 0.8131| 0.7602
4 0.5708| 0,6238| 0,7065| 0.5878| 0.8290| 0.8009| 0.7402| 0.8103| 0.7565
0.5721| 0.6199( 0.693G| 0.5€92| 0.8272 0.8032| 0.7368| 0.0074{ 0.7529
0.5731| 0.6162] 0.6817| 0.5896| 0.8254| 0.8047| 0.7334| 0.3048| 0.7495
0.5739| 0.6126| 0.6708]| 0.5894] 0.8235| 0.8056| 0.7303| 0.8023| 0.7464
0.5745| 0,6091| 0.6607] 0.5888} 0.8216} 0.8060| 0.7274] 0.3000] 0.7434
0.5751| 0.5059{ 0.5515] 0.5880| 0.8197| 0.8061| 0.7247| 0.7979| 0.7407
0.575G6| 0.6029] 0.6431| 0.5871| 0.8178| 0.8059( 0.7222{ 0.7960| 0.7383
0.5760| 0.6002} 0.6355| 0.5861| 0.8160( 0.8055]| 0.7199| 0.79431 0.73G0
0.5763| 0.5976| 0.5286} 0.5851| 0.8142| 0.8050] 0.7179} 0,.7929] 0.7340
0.5766| 0.5953| 0.G224f 0.5842| 0.8125| 0,8043| 0.7161| 0.7916) 0.7323
0.5769| 0.5932| 0.6168{ 0.5833| 0.8108) 0.8036| 0.7145| 0.7905| 0.7307
0.5772| 0.5913| 0.6118] 0.5824| 0.8082] 0.8029} 0.7131| 0.7396| 0.7293
0.5774} 0.5896( 0.3073} 0.5817| 0.8077} 0.8021} 0.7118] 0.7888| 0.7281

I
*
(4]

.
w»

” «

tDE,JGJ\l\lC)mmul
(5]

[
o ©
.

]

+ + ¢ ¥ + + v ' ¥
0.5794| 0.5794) 0.5794] 0,5794] 0,7859] 0.7859] 0.7063] 0.7859] 0.7231

8.—00-

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Table 4.4.2 P{Isc} 1-8} versus u with variations of parameters.
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;'{ACZI -i}

.’; 0.8 T
)
=]
L
J
i 0.7 }
E d = 0,01
: : 4 d = 0.05

Q'G P E ]
3 0.5794 ' ; —
t 0.5 | X
! : =2

. £€=0,1
: A = 0.1
4 . M=1 ‘

0.4 . g = 0.5 (fixed reduction) ﬁ
I 0.3 - ; !
2 :

0.2 1 |- : :

0.1 T
; > + + * i, — > - e u
: 0 1 2 3 4 5 6 7 8 9 10
} Fig. 4.4.7 P {Acal— t]‘ versus u for various nmaintenance-cycle times.

1




u

(3) VARIATION OF FAILURE RATE PARAIEITER (A)

The failure rate paramter A is assumed to change after each preventive

maintenance and it takes the form (other forms may be proposed) :

I\n l@ ( ACD /‘1) GXP( 20 > , Nml,2,... (4.4.4)
The failure rate function r(t) with this maintenance-cycle dependent

failure rate paramter } is plotted in Fig. 4.4.8 (for fixed reduction).

When A varies from }1 to Am , we shall write 1

Alt A<::>

(as 0.05 4 0.1 in Table 4.4.2 Column (6)). The curves of P {A_31-¢f
versus u for A= 0.05, 0.1 and 0.05 % 0.1 are plotted in Fig. 4.4.9
(columns (5), (2), and (6) in Table 4.4.2). The larger the A, the
higher is the failure rate, hence it favors for more failure reduction, or
a shorter optimum operative-cycle time to have more li-cycles. Thus

u"  is chorter for A= 0.1 than that for A= 0.05. For the maintenance
dependent } , as u is small, more O-ll cyles will occur, and hence the
system is closer to that for A= )4@ . As u - @ , less number of

0-} cycles will take place and the system resemblés the one with A= '\1 . J
Asymptotically, the values Pm = 0,5794 and 0.7859 (from Table 3.3.1)

are achieved. The optimum u* differs greatly for the maintenance-
dependent A from the u® 's for constant A'’s. This indicates that
if the failure rate parameter is not known exactly, the characteristics
of the system changes greatly when the A's are actually maintenance-

dependent rather than constant.
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/ ; o A= 0,05

0.8 & f 4:** ——m

0.7859 ;7 ;
. A= 0.05 % 0.1

/ .
0.7 | . .

see oln o0 0e

0.6 ¢

0.5794 — :
0.5 ¢+ . . % =2
. : t = 0&1
; . R . p=1
; Lo © d=0.01
] . . . g = 0.5 (fixed reduction)
0.4 L 3 : : :
003 - : : .
0.2 + -l :
X : i
) . . i
» 4 : . i
"1 o :
i 0.1 1 Do :
1 . :
i . . .
i :

; : — 4 ;
© 2.5 4 4 s 6%%2 8 9 10 ’

i Fig. 4.4.9 P {Ac; 1~ t} versus u for various failure rate parameters.
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(4) VARIATION OF REPAIR RATE PARANMETER (M)

Fig. 4.4.10 shows the variation of the repair rate parameter :
n=10, 1.5 and 2.0 (columns (2), (7), and (8) in Table 4.4.2).
The optimum operative-cycle time u® does not seem to change , probably
because the system failure rate is statistically independent of the
repair tine TF . The smaller the B the longer the mean repair time,
hence the smaller the availability. Thus the probability curves in
Fig. 4.4.10 are lower for smaller p .

(5) VARIATION OF SYSTEN DESICMN PARAMETER (€)

P{A20.9} end P{A »0.85] vorsus u are plotted in Fig. 4.4.11
(columns (2) and (9) in Table 4.4.2). The smaller the £ the larger
; the Ac , hence the smaller the probability. Ifr Ac- is large, a long.
! optimum operative-cycle time u" has to be used. Hence u" is larger
when &= 0.1 than when £= 0.15 .

St e § ik e
LR P .
FYPTIOP G S L Y -

[UPY'Y 39




Cagdian i

r{a3 1-¢}

H=2z
0.8 | /_E._\
0.7859 v -
/—\ T P = 1.5
0.7G063 .
0.7 | :
: p=1
0.6 ¢ . —
0.5794 :
0.5 1 . a4 =2
. t=0,1
i A=0,1
! d = 0.01
. g = 0.5 (fixed reduction)
0.4 T ;
0.3% .
002 9 :
0.1 7% :
. - s . . . . . . . —u
1 2 3 4 5 6 7 8 9 10

Fig., 4.4.10 P{ A% 1-¢} versus u for various repair rate parameters.
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pia 21 -x}
0.8 }
N Ac? 0.85
0.7231 :
0.7
. €= 0.10, A_20.90
0.6 9 ;
0.5794 —
0.5 ¢t Do
: aA =2
. A=0,1
. p=1
: d = 0,01
: g = 0.5 (fixed reduction)
0.4 :
0.3 | .
0.2 ¢ o
: ]
0.1 1 .o
— - -~ u
0 1 1.5 2 3 4 5 6 7 8 9 10

Fig. 4.4.11 P{ Ac>,l-£‘ versus 'ru for various design parameters. £ .




EXNIPU:: 4.4'3

The age replacement policy in g 4.2 will be illustrated in this example
for the following casec :

d=2, €= 0.1, A= 0.1, p=1, d=0.01, g =.0.5 (fixed reduction)
tR
The values of P{Acbl-ii » 1:R (the age replacement time), and P{AAR )l—tt
versus the operative-cycle time u are computed the PASCAL computer program.
t

The graph of P{A R

an 2 1-;} versus t

R for some values of u are plotted

' t,

The age replacement policy is justified by comparing Fig. 4.4.2 and
Fig. 4.4.12.

‘Fixed reduction, g=0.5
a=2, €= 0.1, =0.1, u=l, d = 0,01
maximum
1~
p{a -] £ P{A "~ );1:5}

0.5 0.5899 25.49 0.5904

1 0.6287 28,27 0.6287

2 0.6368 32.15 0.6368

5 0.6162 35,06 0.6162
10 0.5896 40,03 0.5895

Table 4,4.3 Some optimum age replacement timesa.




0.87

.01
0.7 4 5 (fixed reduction)

9 LUIZ

® 2 8 2 s s 8 0 0 & s g, =izl
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0.57
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0 10 20 30 %0

t
Fig. 4.4,12 I’{AME: >,1-t} versus t, for various u .




The existence of an optimum age replacement time (Fig. 4.4.12 and
Table 4.4.3) may be explained by the following argument. Suppose the system
does not fail at the cnd of the Kth 0-il cycle. The probability of system
failure. in the (K+1)th 0=l cycle iz higher than in the previous O-l cycles
because of aging. [lence to replace the system at the end of the Kth O=cycle
is more nieferable than to risk over the next O-if cycle. Thus we expect an

optimun t; for smaller operative-cycle time u . When u is large, the
system may fail during the first few O-M cycles. In this case, t;; should
be chosen ags the first time that the probability of the stochastic

availability achieves certain acceptance level.(see (4.2.14)).

L AR B 2R 2 2K B IR X B /

NOTELE :
The time scale in the examples is not necessary the real tinme
unit. Interpretation is required. For example, we have

*

Then
Aut = 0.2
u' = 0.2/A
J*
22
= (0.2256),(MNTBF)

For a real system with KIBF = 1000 hours, say, then the
optimum operative-cycle time in this case is

u* = 22'--6 hm-

Other parameters and times are interpreted similarly.
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CHAPTER §

COST AND AVAILABILITY

§ 5.1 GENERALIZED STOCHASTIC AVAILABILITY AND STOCHASTIC COST FUNCTION

The concept of maximizing the system availability can be interpreted as
minimizing a suitable system cost function and vice versa (Barlow and
Proschan (1965)).

Let CU ’ CD , and cF be respectively the operative, maintenance,

and repair costs per unit time. If TU and TD are some specified

uptime and maintenance downtime, then the random variable

CUT + CDTD + C '1‘F

U F

is the total cost for a renewal cycle. The fraction

CUTU + CDTD + CFTF

Ty

C =

is the (random) cost per unit operative time for a renewal cycle. Let

c 2 CD/CU = relative maintenance cost with respect to operative

d
cost

o E CF/CU = relative repair cost with respect to operative cost
Define the stochastic cost function as
TU + chD + °fTF

) = (5.1.1)
Ty

Obviously,
1

AH——

c(1,1)

is a stochastic availability.

85
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It iz therefore rcasonable to define the peneralized stochastic availability

asociated with cogts as

T
) = Y (5.1.2)

TU + chb.+ chF

A(cd,cf

Note that ( 0¢e<1 , 0<4<1)

P{A(cd,cf) 21 -z} = P{c(cd,cf) 1+

(5.1.5)

} (5.1.4)
f

- )
l». .'.-.
o ~

P fclegicy) § 1 +8) = P{alcc) 21 -

e may therefore define various types of generalized stochastic {
availabilitles, or equivalently, stochastic cost functions as in 3.1 3
and 84.2.:

(1) Generalized Stochastic Cycle Availability ]
(Stochastic Cycle Cost Function)

- 1
Ac(cd,cf) = e to o
¢ a’’f
To erativ
= 77 + cpT = +c T (5.1.6)
operative d "maintenance E°F
‘ where )
Topcrative a operative uptime for a renewal cycle
T‘ intenance maintenance downtime for a renewal cycle
T = repair time for a renewal cycle.

N
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(2) Generalized Stochastic Availability for the nth 0-l{ Cycle
(Stochastic Cost Function for the nth O=il Cycle)

- 1
AN n(cd.c > E c (c.,c.)
Ntan da*"f
n-1
z:: u +'
= J=1
n=-1 n-1
Z uj * T + C. (2 d + T ) + ch
j=1 j=1

(3) Ceneralized Stochastic Availability for the nth O-Cycle
th

(Stochastic Cost Function for the n~ 0O=Cycle)
Co (cd’cf)
n
n=-1
u, + 7T
=1 J uln
n=1 n=1
2 u + T In + c Z d + C T
Jsl J:l

(4) Ceneneralized Stochastic Availability for the nth il-Cycle
(Stochastic Cost Function for the nth M=Cycle)

( ) = .
Ar-zn CqrCr —rr
1[n d'’f

Z:u

n=-1
z_-_u +c(Zd +'1' )"'chF
=1 =l

(5.1.7)

(5.1.8)

(5.1.9)
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(5) Generalized Stochiastic Availability at a Finite Timc in the nth Q=il Cyclc

(Stochastic Cost Function at a Finite Time in the nth Q=il Cycle)

At(c »C ) = ——-];——
n 4’ f
C (cdpcs)
n=-1
2y
3 A
=1 , 0Ctat-t_ .<u
n-1% n
n=-1 n-1
E u + min(t T ln) + ciz di + chF
J=1 J=l
¢ Z' uJ‘ v
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8 5.2 PROBABILITY DISTRIZUTIONS OF GENERALIZED STOCHASTIC AVAILASILITY

The probability distributions of various generalized siochastic
availabilities or stochastic cost functions can be derived in the caac way
as in Chapter 3 and § 4.2 . We shall depict Fig. 5.2.1 and Fig. 5.2.2
as parallel to Fig. 3.2.1 and Fig. 3.2.2 respectively for the domains of
definitions of the corresponding variables, ans we shall summarize the

1 expressions in the following :
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CIAPTER G

CONCLUSIONS

A general repairable system model with a periodic maintenance schedule,
and age and maintenance dependent failure rate has been studied. This work
examines two special types of failure reduction, various concepts of
stochastic availabilities and their probability distributions, optimum
system design using stochastic availability, age replacement policy, failure
rate characteristics and parameter variations, computational aspects, as well
as ceneneralized stochastic availabilities and stochastic cost functions.

For a periodic operative-maintenance schedule with failure reduction,
we have observed the existence of a unique optimum operative~cycle time u”
(Fig. 4.4.2 and 4.4.6). An analytical proof of the existence and uniqueness
of u" is difficult (Eq.(3.2.18)). However, we have studied the asymptotic
behavior of the P { Ac>,1-£} versus u curve (S 3.3 and Fig. 4.4.2). Ve
conclude that the curve with faiiure reduction is above the asymptotic value
P<n and hence above the curve with no reduction. The reason is that the
lifetime probability density function with failure reduction is asymptotically
greater than the p.d.f. with no reduction (Eq.(Z.5.16) ). Thus the
P { Ac) l-i} crosses the Pcn asymptotically from above. Hnece the
existence of an optimum, (not necessary unique) u is concluded. As a
further extension, the same problem with non-periodic operative-waintenance
policy may be studied to prove the existence and possibly, uniqueness of a

cet of optimum operative-cycle times.

Some optimum system design criteria have been proposed and illustrated
by examples in Chapter 4 to obtain an optimum oprative-cycle time and an age
replacement time. With an appropriate interpretation of the time and
parameter scales{ as noted at the end of § 4.4 ), we can use the results and
curves in § 4.4 in system design to achieve an optimum schedule and to study
system characteristics against parameter variations. Since the analysis
involves complicated expressions, the PASCAL computer program has found to
be useful in generating results as well as insights into the problem.
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Some parameter variations of the repairable system have becn e:plored in
Example 4.4.2. For a real system the statistics of the failure rate are
usually unknown or can bLe ostimated approximately only. The sencitivity ot
optimum design dependz on parameter variations. In particular, the optimnum
operative-cycle time u" changes greatly for a maintenance-dependent failure
rate parameter A than constant A's. This affect is important in system
design because this case represents a system with a rapid varying failure rate
and it is therefore different from the constant failure rate parameter case.
Other parameter variations can be studied in a similar way. For example, the
repair rate u needs not be fixed, or the repair time may not be exponentially
distributed, or the rcpair time may depend on the degree of system failure.

As possible extensions and generalizations, the following topics are
propoged :

(1) Other types of failure reduction criteria and nonlinear failure rates
{not necessarily of Weibull type) can be defined in a similar vay.

(2) iore general repair time distribution may be used. For repair time
depends on system failure, the analysis involves the evaluation of double
integrals instead of single integrals. This can be done both theoretically

and numerically.

(3) DHNon-periodic operative-maintenance policy may be useful to obtain an
optimum set of operative-cycle times by probabilistic maximization of the
stochastic cycle availability when the system parameters change rapidly
with age and maintenance.

(4) Age replacement policy with non-periocdic operative-maintenance schedule
may be treated similarly.

(5) An appropriate interpretation of system costg will apply the use of
generalized stochastic availabilities or stochastic cost functions in

system design.
(6) The present PASCAL computer program can be modified to gatisfy all the

above extensions and potential applications, because the program can bLe
implemented, with zlight changes, in all computers with the standard

U.C.S.D, PASCAL language.




APPENDIX 1

WEISULL DISTRIDBDUTION

“he probability donsity function f£(t) of a Weibull distribution ia
given by (Weibull (1951))

£(8) = Kad'™ exp(=A'€) , £ Do (A1.2)

where
] A = scale parameter
ol = shape parameter

E The shape of f(t) is sketched in Fig. Al.l.
i'hen Olfa 1, f(t) is an exponential p.d.f.
When X = 3, f(t) is a Rayleigh p.d.f.

The distribution function F(t) of the Weibull distribution is given

x by

€ |
F(t) = f s(e)at
: 7

] ‘1-exp(=At) , tXo
- { (A1.2)

0 , t<O

£(t)

Fig. Al.l VYeibull probability density functions.
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The nth noment of a Weibuli distribution is given Ly

(] ® L]
poo- s 0 [;\"at“'l cexp(= £t )]dt
0

= [(g+1) (A1.3)

where r(.) is the gamma function (see e.g. Abramowitz and Stegun (1972)).
In particular, the mean value is given by when n = 1,

liean = :1‘- o é + 1) (Al.4)

X =1 == nmean = (A1.5)

i
A

A =2 = mean = 4K = 0.886/A (Al1.6)

2A
The Weibull reliability function R(%). is given by

R(t) = 1 - F(t)
- { exp(-K¢*) , t20
1 y £ <O

' The Weibull failure rate r(t). is given by

r(t) = f£(t) / (L)

={fo¢t"_l , t»0
o ’ t<o

and the shapes of »r(t) are sketched in Fig. Al.Z2.




iy
r(t) ‘:
o= 3
&=~ 2 (linear)
2]
o = 1 (constant)
0 A ]
Fig. Al.2 Veibull failure rates.
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APPENDIR 2

PASCAL COMPUTER PRQGRAMNM

The PASCAL computer program described in 8 4.3 to ovaluate various
probability distributions of stochastic availabilities is listed below.
In the APPLE II PLUS micrvicomputer system the program is called the
"SYSTEN,WUNK.TEXT" .file and is stored in a 5Si" x 54" floppy disk named thc
'APPLEY: ' disk. To start the system, a disk named 'APPLE3:' is inserted
into the disk drive then followed by the 'APPLEY:' disk. One simply types
“R" to run the program. The program can be implemented in other computer
systems with minor modifications because the PASCAL system is the standard
U.C.S.D. PASCAL language.
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CIOGR CHAarLSALL L LU UUTFUT )
CRORRRK R XK KK AR KRR K ROK KR KKK KKK KK KK KK KK KKK K ARk i ko )
(XX PROBABILITIES OF STOCHASTIC AVAILABILITY OF A REFPAIRABLE X))

(XX SYSTEM WITH AGE AND MAINTENANCE DEPENDENT X))
3 FAILURE RATES AND OPTIONAL AGE REPLACEMENT POLICY xX)
(XX ’ APRIL 14, 1982 %)

( KKKEKKKKKKKKKKKKK KKK EEKKKKKKKKKEEKEKKKKEKKRKKKKKKAKKKEAK KKK )
( XES+x)

USES TRANSCENDj

CONST CONV = 1.0E-7}
S1 3/ N’
s2 =’/PLAC>1-ED §
s3 3/ EINCT)IT /5
S4 =/ ART ‘3
SS =’ PCAAR] 7
56 =’ PCAQY
s7 =’ PCAMI /i
s8 =’ PCAN] ‘4
59 =’ PCNCT)=N]’ 5
TYPEQ =/<%X NO FAILURE REDUCTION Xx>’j
TYPEL =/<%x FIXED REDUCTION XxXx>‘;j '
TYPE2 =/<%Xx PROPORTIONAL REDUCTION *Xx>’j
PA =/ PL SCA>’;
TIME=’ OPERATIVE-CYCLE TIME = ’j

VAR DNy UNsUD»yID»IUsTL1sT2»T39T»TO»UPO»RIRT/RRsyRFyRUSFO»
TUP» TBOWNs TUT»TDT»F»FUsFD»DTUP»PROBYPRsDPyRDY RO Gy
EMsMUT»MLTYEsE1sEEsDELTAIFIXsSCALEPARAMUPTARTy
ACrAM»ANIPNsAAR » MU» LAMDA» LAMAF s LINFyLZERO?! REAL
LUBsN»ALFPHAYALFAL1POINTy TERMsKINDKsL »
SELECTsPRINTALL: INTEGERS
EXIT: BOOLEANS
CHOICE,SDATE?! STRING?S
FILER? INTERACTIVES

PROCEDURE OUTPUTCONTROL §
BEGIN
WRITELNCQUTPUT MEDIUM /)4
WRITELNC(’ 1 = CONSOLE’)s
WRITELNC’ 2 = PRINTER’)j
WRITE(’WHICH NUMBER? ‘)i READLN(SELECT)j
CASE SELECT OF
1: CHOICE!=’COMSOLE:’
2% CHOICE:=’PRINTER:’}$

END’
IF (SELECT=2) THEN
BEGIN
WRITEC(’ PRINT ALL ? (YES=1y NO=0) ’ )SREADLN(PRINTALL)
ENDS$

END5 (X% QUTPUT CONTROL Xx)

FUNCTION POWER(X: REALSJ Y: INTEGER): REAL}
VAR Z! REAL}
BEGIN

Z:=1,03




WHILE Y0 Lo L
BECIN
WHILE NOT ODDCY) IO
BEGIN
Yi=Y DIV 25
X =X%X
END;s
Yi=Y~-13
Zi=X%Z
ENDj
POMWER:=Z
END; (¥ INTEGRAL PQWER X)

FUNCTION MAX(A: REAL#? B: REAL)?! REALj
BEGIN

MAX:=0.3%( A+B+ABS( A+E))
ENDF (X MAXIMUM X)

FUNCTION MINCA! REALS B! REAL)! REALS
BEGIN

MIN=0.35%( A+B-ABS( A~B))
END3 (% MINIMUM X)

FUNCTION EXPF(T! REAL )! REAL;
VAR X! REAL?
BEGIN
IF(T<~60.0)THEN X:!=0.0
ELSE X3i=EXP(T)j
EXPF =X
END? (X EXPONENTIAL FUNCTION WITH UNDERFLOW SUPPRESSION Xx)

FUNCTION REPAIR(T! REAL)! REAL/
BEGIN
REFPAIRI=1,0~-EXPF( -MUXT) |
END3 (% EXPONENTIAL REPAIR TIME CDF x)

PROCEDURE DISTRIBUTIONC(T,TOsRRsDEL! REALIVAR RsRFyF? REAL )}

BEGIN
R {=PARAMKPOWER( TyALFAL1 )-DELTAS
RF ¢ =EXPF( ~LAMAFX( POHUER( T» ALPHA )-POWERC TOs ALPHA ) J+DELTAX( T-T0 ) )3
F $=R¥RF%RR

ENDF (X AGE & MAINTENANCE DEPENDENT WEIBULL FAILURE RATE %)

PROCEDURE SIMPSON( T1,I1,T2»I3,RR,DELTA>EE»TTUyTTDsHUsHD! REALS
NPUsNPD? INTEGER? VAR IU»ID?! REAL)S
VAR SUO»SU1,SU2,5U4,500,5D1,SD2,SD4POF»SFy
X»Y»Ul,U2,D1sD2¢ REAL’
JyNU1»ND1? INTEGERS
BEGIN
IU=0.0;5
IF HU>0.0 THEN
BEGIN
Ul 3=MAX(0.0,EEXIL1-TTD)}
DISTRIBUTIONC( I1»T1yRRyDELTA»R»SFPDF )5




SUO S =PUFEREF A LIRCUL ) ¥
U2 I=EEXT2-TTDs
ODISTRIBUTIONC( T2, T1sRRyDELTAYR»SF»PDF )5
SU1:=PDFXREFPAIR(UZ)S
SuU2:=0.05
SU4:=0.05
NU1:=NPU-15
FOR Ji=1 TO NUl DO
IF OpD(J) THEN
BEGIN
X =I1+J%HUj
Y (=EEXX-TTDj
DISTRIBUTION(X»T1sRRsDELTAsRsSFsPDF )5
SU4 {=SU4+PDFXREPAIR(Y)
END
ELSE
BEGIN
X =I1+J%HUS
Y $=EEXX-TTD$
DISTRIBUTION(X»T1»,RRsDELTAsR»SFs»PDF )
SU2:!=SU2+PDFXREPAIR(Y)
END#
IU=HUX( SUL1+SU0+2.0%SU2+4 .0%X5U4)/3,05
ENDS
ID:=0.03
IF HD>0.0 THEN
BEGIN
D1 =-T2+TTU
DISTRIBUTIONC T2» T1sRRsBELTAYRySFyPDF )i
SDO !=PDFXREPAIR(D1)j
D2 :=-I34TTUS
DISTRIBUTIONS I35 T1sRRsDELTAYR»SFsPDF )
SD1:=PDFXREPAIR( D2)}
SD2:=0.05
SD4:=0.03%
ND1:=NPD~1;
FOR J:=1 TO ND1 DO
IF 0DD(.J) THEN

BEGIN
X $=T2+JXHD}
Y $=-X+TTU;

DISTRIBUTION(XsT1sRRyDELTASR»SF+PDF)j
SD4 :=SD4+PUFXREPAIR(Y)

END

ELSE

BEGIN
X 1=T2+J%HDj
Y ==X+TTUj
DISTRIBUTION(XsT1sRRsyDELTAsRsSFPDF )j
SD2:=SD2+PDFXREPAIR(Y)

END3J

ID!=HD%( SD1+SD0+2.0%XSD2+4,0%X5D4 /3.0
END3
ENDF (X SIMPSON’S RULE X)

PROCEDURE INTEGRATIONC(T1+T2yT3sRRsDELTA? REAL;
VAR UPT»IU»ID: REAL)S
VAR HDsyHUs»I1sI3»TTU»TTDSUTT: REALS
NPsNPUsNPD: INTEGERS




HEGIN
NPU$=2%ROUNDC POINT/2 )3
NPD $ =24ROUNDC POINT /4 )3
I1 $=MINCT2s T1+MAX(0.0s~TUT+TDT/EE));
UTT:=TUT+T2-T1;
I3 $=MAX(0.0sMINC T3y T2+EEXUTT-TDT )3
TTUS=UTT/EL}
TTD:=TOT/EL}
1 HU $=MAX(0.05( T2-I1)/NPU)}
g HD $=MAX(0.0s( I3-T2)/NPD);
i SIMPSONC T1sI1,T2sI3sRRyDELTAsEE» TTUs Ty HUsHDsNPUsNPD»IU»IN )3
; UPT$=UTTs
3 IU $=MAX(0.0,IU);
¢ 1D $=MAX(0.0,ID)
? END; (% INTEGRATION %)

PROCEDURE WEIBULL(T1: REAL$ VAR RO: REAL)j/
BEGIN
LAMDA {=LINF-C( LINF~-LZERQ YXEXP( =( N~1 )/SCALE);
ALFALl:=ALPHA-1/
LAMAF :=POWER( LAMDA s ALPHA )
PARAM: =ALPHAXLAMAF § : .
RO $=PARAMXPOUER( T1sALFAL)
END? (X WEIBULL PARAMETER %)

PROCEDURE PROBABILITYj

BEGIN |
PR {=PROB; !
DISTRIBUTIONC T2 T1yRRsyDELTAsReRUEUIS
DISTRIBUTIONC T35 T1sRRsDELTAsRTsRDsFD )}
UN  $=MAX(0.,0syRR%(1.,0~-RU))3
IN  $=MAXC0.0sRRX(RU=RD)); !
Ul =DN+UN;
PN  :=PN-UD;
FO  =FO+UN;}
INTEGRATIONC T1s T2y T3sRRyDELTAsUPT»IUy 103 ;
IF (UD>0.0) THEN

BEGIN
" AQD $=IU/UD;
AM  !=ID/UD; !
AN 1=UNXAO+DNXAM; . |
PROB $=PROB+AN} ‘
* AN $=AN/UN
ENDj

ART  1=UPT4+TDT;
AAR  $=PR+IU+PNXREPAIR( UPT/E1-ART )3
EN  S=EN+NXUDj : |
IF (PRINTALL=1) AND (SELECT=2) THEN |
WRITELNC FILERyN:3sPROB:1036,ENS7325ART $8: 3y g
AAR:P:45A021036sAMS1037ANS10:7,UDS12)5
WRITELNCN33sPROBS10:6/ENS7:2sART:823,AARF Sy
AD:1034yAMS107ANS1087,UDS12)5
TERM =Nj
TUT  $=TUT+T2-T1;
TDT  $=TDT+T3-T2; j
; RR  !=RR¥RDj
T1  $=T3;
T2  $aT14TUP

it ok

e




(3 V= U24TO0WH
N 1=N+15
WEIBULL(T1,RO)j
IF (KIND=1) THEN
DELTA (=MAX(O0.0syRO-RT+FIX )5
IF (KIND=2) THEN
DELTA :=MAX(0.0yRO-(1.,0-GIXRT )}
op +=ABS( PROB~PR )}
IF {DP<CONV) ANDI (PROB<1.0) AND (N>1) THEN EXIT!=TRUE
END3 (X TOTAL PROBABILITY X)

PROCEDURE INPUT;

BEGIN
WRITELNS
WRITEC(’%x¥X DATE ¢ ‘)iREADLN(DATE);
WRITE(” E = /)IREADLNCE)j
WRITE(C’ ALPHA = / )iREADLNC ALPHA )
WRITEC’LAMDA INITIAL = / )SREADLNC(LZERO)j
WRITE(’LAMDA FINAL = 7 )sREADLNCLINF)j

SCALE :=10.0j} ,

WRITE(C” MU ’ JSREADLN( MU )}

WRITE( MAINTENANCE~CYCLE TIME = ‘ )SREADLN( THOWN)$
WRITELNCCRITERION OF FAILURE REDUCTION ¢ )
WRITELNC’ TYPE Q NO FAILURE REDUCTION ‘)i
WRITELN(’ TYPE 1 FIXED REDUCTION 7)j

WRITELMC(’ TYPE 2 PROPORTIONAL RETIUCTION /)5

L ]

WRITE(” TYPE = ’ )iREADLN(KIND);
IF (RIND=0) THEN G:=0,0
ELSE
BEGIN
WRITE(’ REDUCTION FACTOR = ‘ )SREADLN(G)}
END 5

WRITE(’ INITIAL O-CYCLE TIME

WRITE({’O~CYCLE TIME INCREMENT ’ VIREADLNCDTUP )

WRITE(’NUMBER OF 0-CYCLE TIME / )SREADLNCL) S

HWRITEC( SUMMATION TERMS = ‘ )iREADLN(LUR);

WRITEC INTEGRATION POINTS = 7 )iREADLNC(POINT)
END3 (X INPUT DATA X)

’ YiREADLNCUPO )}

PROCEDURE DATAj
BEGIN
INPUT
LAMDAS=LZERD
El t=1.0-Ej
EE 1=E/E15
REWRITE(FILERYCHOICE )5
WRITELNCFILER)S
WRYTELNCFILERsDATE ¢ ‘H»DATE)SWRITELNCFILER)S
WRITELNCFILER, %% STOCHASTIC AVAILARILITY XX’ )i
IF (KIND=0) THEN WRITELN(FILER,TYPEO)
ELSE
BEGIN
IF (KIND=1) THEN WRITELNCFILERyTYPEL1)S
IF (KIND=2) THEN WRITELNC(FILER,TYPE2);

WRITELNCFILERS REDUCTION FACTOR = ’»Gi715)
ENOS
URITELNCFILERS E = 'HEISI2)}
URITELNCFILERy APLHA = ‘sALPHA2)j




I ocralhu-Lingd 5 ik
BhITELMN FLILEFR LAMIA = ‘sLAMDALTZ 1 4)
gloc
BEGIN
WRITELN(FILER»’LAMDA INITIAL = ‘SLZERO:734);
WRITELN(FILERy’LAMDA FINAL = ‘SLINF:7%4)
ENl
WRITVELNCFILERS” MU = " sMUI724)5
URITECLNCFILERy  MAINTENANCE-CYCLE TIME = /»TDOWNIZ7:S))
WEITELNCFILERS INTEGRATION = ‘»POINT»’ POINTS’)

ENDFC X PRINT DATA %)

PROCEDURE HEADINGS
BEGIN
IF (PRINTALL=1; AiD (SELECT=2) THEN
BEGIN
URITELNCFILER )
WRITELN(FILER»TIME»TUP:8:S)s
WRITELN(FILERYS1+82+53+54+s55,56s57,58:,59)
END S
WRITELNC )3
t‘-’RITELN( ’ se e o' fTIME'TUP:B:E);
WRITELN(S81+52,53+54+55+56y57y58+59)i
WRITELNC )
ENDIIs (% PRINT HEADING %)

PROCETWURE INITIAL;?

BEGIN
EXIT $=FALSE}
ALFA1!=ALPHA-1}
LAMAF :=POQUER(LZEROsALPHA )
PARAMI=ALPHAXLAMAF§ -
FIX =GXPARAMX( TUP+TDOWN)}
DELTAL=0.05

N =15
PROB :=0.05
PN t1=1.,03
RR 1=1.0%
FO :=0.,05
0T 1=0.05
TUT  $=0.0j5
EN $=0.,0%
T1 $3=0,05
T2 +=TUPS$
T3 +=T2+TDOUWN

END? (x INITIAL CONDITIONS x)

BEGIN (XX MAIN PROGRAM XX%)

OUTPUTCONTROL ;

DATAjS

TUP ¢=UPO3

FOR Ki:=1 TO L DO

BEGIN

INITIALS
HEADING
REPEAT PROBABILITY UNTIL (N>LUB) OR EXITj
IF N-LUB THEN




BEGIN 105
WRITELNC FILER )5
WRITELNCFILERy’ %Xk SCA NOT CONVERGE IN ‘sLUEy’ TERMS %X’ )3
WRITELN(FILERsPAYEL:4:25° 3 = ‘yPROB!96r’» ' >TIMESTUP)

END

ELSE

BEGIN
AUT :3TUPX(EN=0,5)3
MLT $=¢ TUP+TDOWN )X( EN~0.5)}
WRITELNC FILER)SWRITELNC FILERy TIME» TUP (S!S )j
WRITELNC FILERYPAIELS422y7 1 = /yPROBLDIEs’ »
WRITELNC FILERy’MEAN O-M CYCLES = ‘,EN);

L/ yTERM»” 3’ )5

WRITELNCFILERs’  MEAN UPTIME = ‘,MUT);
8 WRITELNCFILERy’ MEAN LIFETIME = ‘,MLT)
] END3
; TUP $=TUP4DTUP

END';

3 URITELNC )5 WURITELNC / RXRXKXXORKKKR . END  KKKKKXXKKKKRKKXKKK )5
u WRITELNC FILERy * RXRRXERERRORKRRRRRKLKARKKKKKKRKRAKKKK 9

* BERLERLIARKREERKCRKRERIRAKAKREERKKIRKERRKKK’ ) 5

CLOSE(FILER)
END, (%% STOCHASTIC AVAILABILITY Xxx)
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